
Improving Creation, Maintenance and
Contribution in Wikis with Domain

Specific Languages

Dissertation
presented to

the Department of Computer Languages and Systems of

the University of the Basque Country

in Partial Fulfillment of

the Requirements

for the Degree of

Doctor of Philosophy
(“international” mention)

Gorka Puente García

Supervisor: Prof. Dr. Oscar Díaz García

San Sebastián, Spain, 2012

This work was hosted by the University of the Basque Country (Faculty
of Computer Sciences). The author enjoyed a doctoral grant under the
FPI (Formación de Personal Investigador) doctoral program from the
Spanish Ministry of Science and Education (Ministerio de Educación y
Ciencia) during the years 2009 to 2012. The work was co-supported by
the Spanish Ministry of Science and Education, and the European Social

Fund under Contract TIN2011-23839 (Scriptongue) and TIN2008-06507-
C02-01 (MODELINE).

.

To my parents, Atxen and Javi,
for their wholehearted support and patience,

to my brother, Jon,

Semper Fidelis,

to my fiancée, Esme,

for being you

“If you think you are worth what you know, you are very wrong. Your
knowledge today does not have much value beyond a couple of years. Your
value is what you can learn and how easily you can adapt to the changes
this profession brings so often.”

– Jose M. Aguilar

Summary

The radical simplicity and versatility of wikis have encouraged individuals
and groups to rapidly embrace this technology. Wikis produce impressive
results with minimal resources for knowledge formation and sharing.
However, wikis’ main characteristics have to be reconsidered when wikis
are integrated in an existing organization as opposed to an open wiki
(e.g., Wikipedia), due to the challenges this entails: (i) during wiki
inception, wikis have to be tuned to the existing information ecosystem
(e.g., documentation, organigram, milestones, etc.); (ii) wikis’ organic
growth results in huge structures of pages which constantly need manual
restructuring and maintenance; and (iii) corporate users may demand a
personal and protected setting before the exposition of their personal
knowledge to the public scrutiny.

This Thesis presents an approach, uses cases and a prototype to
the aforementioned challenges: (i) it advocates the use of a “Wiki
Scaffolding”, i.e., a wiki installation that is provided at the onset to
mimic the organizational setting; (ii) it facilitates “Wiki Refactoring” by
mind maps manipulation; and (iii) it proposes a mechanism for wiki
augmentation as a way for users to locally supplement their own content.
The proposed approaches rely on Domain Specific Languages (DSLs)
to overcome the challenges, specifically WSL, WikiWhirl, WikiLayer and
ScheMol.

Contents

1 Introduction 1
1.1 Overview . 1

1.2 Context . 2

1.3 General Problem . 3

1.4 This Dissertation . 5

1.5 Problem Statement for Wiki Initialization 6

1.6 Problem Statement for Wiki Refactoring 8

1.7 Problem Statement for Wiki Customization 12

1.8 Contributions . 14

1.9 Design-Science as Research Approach 14

1.10 Outline . 17

1.11 Conclusions . 20

2 Background 21
2.1 Overview . 21

2.2 Wikis . 22

2.2.1 Definition . 23

2.2.2 Motivation . 24

2.2.3 Wiki Engines: MediaWiki 27

2.2.4 Successful Case Studies 29

2.2.5 Current Research Issues 31

2.3 Model Driven Engineering 32

2.3.1 Definition . 33

xi

Improving Creation, Maintenance and Contribution in Wikis with DSLs

2.3.2 Motivation . 33

2.3.3 Models . 35

2.3.4 Metamodels . 36

2.3.5 Domain Specific Languages 37

2.3.6 Transformations 40

2.3.7 The Four Layer Architecture 41

2.3.8 Technical Spaces 42

2.3.9 Model Driven Interoperability 44

2.3.10 Successful Case Studies 45

2.3.11 Current Research Issues 46

2.4 Conclusions . 48

3 Wiki Initialization: Aligning Wikis with Organizations 49
3.1 Overview . 49

3.2 WSL Decision . 51

3.3 WSL Analysis . 52

3.3.1 The Need for Wiki Scaffolding 53

3.3.2 Setting the Features 56

3.4 WSL Design . 59

3.4.1 WSL Abstract Syntax 60

3.4.2 WSL Concrete Syntax 62

3.5 WSL Implementation . 71

3.6 WSL Deployment . 72

3.6.1 Edition . 72

3.6.2 Verification . 73

3.6.3 Enactment . 75

3.6.4 Installation . 75

3.7 Discussion through Related Work 76

3.7.1 Scaffolding to Promote User Engagement 77

3.7.2 Scaffolding to Mirror Existing Organizational
Practices . 79

3.7.3 Scaffolding as a Way to Engage Management . . . 80

xii

CONTENTS

3.7.4 Scaffolding as a Wiki Map 82

3.8 Conclusions . 83

4 Wiki Refactoring through Mind Map Manipulation 87
4.1 Overview . 87

4.2 Motivating Scenarios . 88

4.2.1 Wiki Initialization 91

4.2.2 Structure Refactoring 93

4.2.3 Content Refactoring 95

4.3 Understanding Wiki Refactoring 97

4.3.1 The Wiki Corpus 97

4.3.2 Refactoring Operations 98

4.3.3 The Process of Wiki Refactoring: Requirements . 102

4.4 Perceived Affordance for Refactoring 104

4.4.1 About the Tool: MediaWiki 104

4.4.2 About the Environment: Organizations 106

4.4.3 About the User: Knowledge Workers 107

4.5 WikiWhirl: The Abstract Syntax 109

4.6 WikiWhirl: The Concrete Syntax 115

4.6.1 Wiki Models as Mind Maps 117

4.7 WikiWhirl: Tool Support 118

4.7.1 FreeMind as an Editor of Wiki Maps 119

4.7.2 FreeMind as an Enactor of Refactoring Operations 121

4.7.3 FreeMind as an Interpreter of Refactoring Operations122

4.7.4 FreeMind as a Workplace for Refactoring Sessions 123

4.7.5 Architecture of the WikiWhirl Plugin 125

4.8 Evaluation . 127

4.8.1 Experimental Design 129

4.8.2 Execution . 133

4.8.3 Analysis . 135

4.8.4 Threats to Validity 141

4.9 Wiki Refactoring Backed by the Community: Ballots . . . 142

xiii

Improving Creation, Maintenance and Contribution in Wikis with DSLs

4.10 Related Work . 144

4.11 Conclusions . 148

5 Wiki Customization through Web Augmentation Techniques 151
5.1 Overview . 151

5.2 Motivating Scenarios . 153

5.3 WikiLayer: Layers on Wikis 157

5.3.1 Features of Wiki Customization 159

5.3.2 Understanding WikiLayer Expressions 161

5.4 Framing WikiLayer into Wikipedia 165

5.5 Related Work . 169

5.6 Conclusions . 174

6 Conclusions 177
6.1 Overview . 177

6.2 Results . 177

6.3 Publications . 179

6.4 Research Visits . 181

6.5 Assessment and Future Research 182

6.6 Conclusions . 185

A Harvesting Models from Wiki Content 187
A.1 Overview . 187

A.2 Web2.0 as Motivation of Schemol 188

A.3 A Brief on Schemol . 190

A.4 Schemol for Wikis . 193

A.5 Related Work . 198

A.6 Conclusions . 199

B MySQL Script for the Merge Operation 201

C MediaWiki Background Questionnaire 203

D Global Understandability Questionnaire 207

xiv

CONTENTS

E Final Questionnaire 211

Bibliography 215

xv

List of Figures

1.1 Chapter map. 17

2.1 MediaWiki four layers architecture. 28

2.2 MediaWiki database schema (partial view). 29

2.3 MDE is a broader term that encompasses other model
based initiatives. 33

2.4 The basic concepts of a model transformation. 41

2.5 The four layer architecture revisited by Bezivin. 42

2.6 The four layer architecture for the relational database and
modelware Technical Spaces. 43

3.1 Wiki Scaffolding feature diagram. 57

3.2 WSL metamodel (abstract syntax). 60

3.3 Purchase project scaffolding. 63

3.4 FreeMind metamodel. 66

3.5 WSL architecture: FreeMind as an interface of MediaWiki. 70

3.6 WSL skeleton: a basic WSL template to get going. 73

3.7 Verifying WSL expressions. Example for the map at
Figure 3.3. 74

3.8 Wiki home page generated by WSL. 75

3.9 Template and article pages as generated by WSL for the
“Purchase Project” example. 76

3.10 WSL scaffolding for a wiki to support student engagement.
Output available at www.onekin.org/wsl/IScourse. 79

xvii

www.onekin.org/wsl/IScourse

Improving Creation, Maintenance and Contribution in Wikis with DSLs

3.11 WSL scaffolding for a video-gaming wiki. Output
available at www.onekin.org/wsl/Eveonline. . . 81

3.12 WSL scaffolding for a wiki to support veterinary
education. Output available at www.onekin.org/

wsl/Veterinary . 82

4.1 MediaWiki view of the article Coagulation Tests. 89

4.2 WikiWhirl and MediaWiki view for WikiBlood. 90

4.3 Structure refactoring: constructuing the corpus of the wiki. 93

4.4 Content refactoring: rearranging content along the wiki . . 96

4.5 Article merge through MediaWiki. 106

4.6 Refactoring affordances. 108

4.7 WikiWhirl metamodel (abstract syntax). 109

4.8 Merge operational semantics. 113

4.9 FreeMind XML Schema for map drawing (represented as
a Ecore metamodel). 119

4.10 Turning FreeMind into a “Wiki Refactoring” tool. 122

4.11 Two scenarios that raise refactoring errors. 123

4.12 The WikiWhirl tracking window traces the refactoring
operations. 124

4.13 WikiWhirl architecture. 125

4.14 Graphics for the performance test in Table 4.5. 127

4.15 The Ballot Process. 142

4.16 The rebot generates a discussion page. 145

5.1 The XML article before (top) and after (bottom) being
subject to WikiLayer. 154

5.2 A history page being augmented with information about
Karma from http://wpcvn.com. 158

5.3 Wiki Customization feature diagram. 160

5.4 WikiLayer navigates to the URL indicated in the
extractFromPage() and allows to select a fragment of it. . . 163

xviii

www.onekin.org/wsl/Eveonline
www.onekin.org/wsl/Veterinary
www.onekin.org/wsl/Veterinary
http://wpcvn.com

LIST OF FIGURES

5.5 WikiLayer expression before (top) and after (bottom) the
selection of the fragment in Figure 5.4. 163

5.6 The tab Edit in the “WikiLayer” mode. 166
5.7 XML article enhanced with a graph from www.indeed.

com. 167
5.8 The tab Read in the “WikiLayer” mode. 169
5.9 The tab Read in the “WikiLayer” mode. Sharing layers. . . 170

A.1 Model harvesting in Schemol 191
A.2 Editing a wiki article. Using two templates, UseCase and

Software. 196
A.3 MediaWiki database schema (partial view) and UseCase

metamodel. 197
A.4 Schemol transformation for the MediaWiki case study. . . 198

B.1 MySQL script automatically generated by WikiWhirl for
the merge operation. 202

xix

www.indeed.com
www.indeed.com

Chapter 1

Introduction

“Happiness is not something ready made. It comes from your own actions.”

– Dalai Lama.

1.1 Overview

The radical simplicity and versatility of wikis have encouraged individuals
and groups to rapidly embrace this technology, producing impressive
results with minimal resources [Lam04]. Along these lines, not just
individuals but also companies are increasingly realizing the benefits of
wikis [Car07]. However, the very qualities that make wikis so successful
as a grassroots-oriented pilot can also create corresponding challenges as
the project grows [Lam04].

Due to the nature of the hosting organization, let this be an open
community (e.g., Wikipedia), a learning organization [TMC08] or a
company [LB10], there are differences when it comes to integrating a wiki
in the organization. These differences directly impact on wiki success,
and mechanisms are needed to facilitate the alignment of the wiki with
organizational practices, promote management engagement, enhance the
visibility of the wiki’s practices, or encourage employee participation. This

1

Improving Creation, Maintenance and Contribution in Wikis with DSLs

thesis addresses some of the challenges encountered during the integration
of wikis in organizations.

1.2 Context

21st century organizations need mechanisms to cope with the fast business
environment, where information and knowledge are the key factors in
their never-ending competitive race. In this setting, wikis are becoming
commonplace for knowledge formation and sharing [Ram06]. Indeed,
wikis are being globally adopted within companies’ intranets. The Social
Intranet Study [War11] surveys the use of Web2.0 tools (i.e., forums, blogs,
wikis, instant messaging, RSS, tagging, etc.) in companies. This study
shows that 61% of the respondent companies (1,401 participants) were
using wikis. In fact, in a Forrester report, researchers predict that wikis
“will have the greatest impact on workplace collaboration” [YMY+08].

This comes as no surprise since most executives realize that intranet
2.0 tools are delivering value in terms of reducing costs, improving
productivity and enhancing the user experience [Fin09]. Even though
the benefits go beyond money, and the less tangible benefits are the
most valuable (e.g., knowledge retention and management, stakeholder
collaboration, etc.), the return on investment (ROI) measurement in a
corporate setting is a must. A study [Fin09] revealed that the average
annual ROI of the respondent companies was $1 million, although answers
varied from $0 to $20 million. Specifically, companies such as British
Telecom (BT), Intrawest Placemaking or T. Rowe Price report important
savings (from hundreds of thousands of dollars to millions) thanks to
the use of wikis. Curiously enough, the Social Intranet Study [War11]
indicates that around 30% of the companies have only a single person
dedicated to managing the intranet, what may explain that most companies,
80%, do not measure the ROI of their intranets.

Nevertheless, the original intention of wikis was to be open wikis (as
opposed to corporate wikis), and wikis’ main principles conflict with the

2

Chapter 1. Introduction

organizational setting peculiarities. Corporate wikis differ from open wikis
in: (i) who use them. Communities in open wikis are built around the
wiki itself, whereas organizations already have employees that will become
wiki users. In addition, employees adopt distinct roles within projects,
departments, and so forth, making user definition and management harder;
(ii) what they are used for. Open wikis are created for an end (e.g.,
an encyclopaedia), while corporate wikis represent a means for an end
(e.g., knowledge management, support projects or tasks, decision-making,
etc.), so that the effort to create and maintain the wiki should be minimal;
(iii) how they are used. Corporate wikis demand complex access control,
editing entails a responsibility, deadlines are frequent, and so on, what
requires advanced management mechanisms; and, (iv) what is used in
them. When a corporate wiki is to be created, there are existing documents
(e.g., spread sheets or word documents, policies, reports, templates,
etc.) that must be ready from the very beginning, demanding import
mechanisms.

Therefore, the wiki success might not be directly translated to a
corporate setting. A tension rises between wikis’ affordances (i.e., action
possibilities) and the nature knowledge is managed in organizations (e.g.,
restrictions in access) [YA12]. Specifically, this work delves into three
activities: wiki initialization, wiki refactoring and wiki customization.

1.3 General Problem

An Information System (IS) is defined as “a designed system that collects,
stores, processes, and distributes information about the state of a domain”
with three main functions: (i) memory to maintain a representation of
the state of the domain; (ii) informative to provide information about
the state of the domain; and, (iii) active to perform actions that change
the state of that domain [Oli07]. As any other IS, the interplay of
technology, work practice, and organization is paramount to achieve
successful wiki deployments. Therefore, wikis’ main characteristics have

3

Improving Creation, Maintenance and Contribution in Wikis with DSLs

to be reconsidered when wikis are integrated in an existing organization.
This dissertation tackles three scenarios, namely:

1. Wiki initialization. First of all, the wiki is created and during this
stage the peculiarities of each organization will certainly percolate
the wiki. Documentation, organigrams, project milestones should
all be there by the time the wiki is created. This contrasts with open
wikis (e.g., Wikipedia) where the community did not exist prior to
the wiki. As a result, corporate wikis need to be tuned at the onset to
the already existing information ecosystem.

2. Wiki refactoring. Wiki content and structure evolve hand in hand
with its supporting community (a.k.a. the wiki’s Organic Principle

[Cun06]). Since people have different mental maps (i.e., perception
of the world), they express them in different structures although
not always properly. In practice, this ends up in large structures of
articles and categories which constantly need manual maintenance.
Wiki refactoring has to do with the hassles of keeping the wiki in
“good shape”.

3. Wiki customization. The last scenario comes with the tuning of the
wiki to the user specifics. So far, wiki editions are exposed directly
to the public scrutiny. Even though this might not be a big burden
for anonymous contributors in open wikis, it might cause distress
in identified contributions in corporate wikis. Now, the observers
are your own colleagues. This advises to introduce a private sphere
where users can control the disclosure of their contributions as they
gain confidence.

Corporate environments are demanding and if these challenges are
overcome, wikis are able to provide a low upfront investment, a reduced
maintenance and a successful collaboration framework.

4

Chapter 1. Introduction

1.4 This Dissertation

This Thesis proposes an approach, use cases and a prototype for each of
the aforementioned challenges, for doing so:

1. During wiki inception, this dissertation advocates for the use of a
“Wiki Scaffolding” to align wikis with the corporate strategy. A
“Wiki Scaffolding” is a wiki installation that is created at the onset
to mimic the organizational setting. This approach saves resources
(both economical and in manpower) and makes wikis accessible to
domain experts.

2. While the wiki grows, the presented approach allows wiki users
to conduct wiki refactoring themselves. In this regard, the
expression of wiki refactoring is facilitated by the manipulation
of mind maps. This approach accounts for an improved global
understandability (i.e., correct interpretation of wiki content),
productivity (i.e., less time and errors) and refactoring affordance
(i.e., a perceived opportunity for action) while authorship and
readership are preserved. Moreover, mind maps provide a general
perspective that makes the spot of refactoring opportunities easier,
accessible to end-users and more intuitive.

3. Wikis may become repositories of personal knowledge without
losing their main principles. Users can augment wikis based on
their own needs. To this end, web augmentation might offer a
backdoor for people to do more personalized exploration; instead
of trying to converge on a consensus, augmentation might account
for a more personal and protected setting, which can eventually spur
contributions.

Following sections describe the issues that need to be addressed.

5

Improving Creation, Maintenance and Contribution in Wikis with DSLs

1.5 Problem Statement for Wiki Initialization

• What. “Wiki Scaffolding” stands for a wiki installation (a.k.a. a
wiki project) that is available from the wiki’s onset, before any
contribution is made. Such installation mirrors the practices of
the hosting organization. Some examples follow: (i) company
schedulings might impact the pace at which wiki articles are
provided (e.g., deadlines, project milestones); (ii) products, services,
customers or established terminology within an organization might
become categories to classify wiki articles; (iii) employees eligible
to contribute, and their access control permissions, might be
based on the company’s organigram. A “Wiki Scaffolding”

captures this setting as a wiki installation where the basic wiki
configuration might be extended (through plugins) based on the
selected scaffolding features (e.g., a plugin for events and calendars).

• Why. The fact that wikis facilitate knowledge creation does not
imply that such knowledge comes out of the blue. Both, the paralysis
of facing an empty article and the lack of a holistic view of the wiki
content, might prevent grassroot initiatives from “getting off” the
ground. At this respect, scaffolding brings three main benefits:

1. Scaffolding facilitates wikis to be better aligned with the
organization strategy. Wikis are frequently a bottom-up
phenomenon whereby the wiki is introduced by an individual
employee or a small group within the organization and without
the support of management. This approach may be useful to
uncover hidden knowledge or hidden ways-of-working in a
dynamic and unplanned way. However, it might fail in having
a strategic intent. A lack of strategy might result in no clear
guidelines about what, how and who should contribute. If so,
“Wiki Scaffolding” forces to think about these concerns right
from the beginning.

6

Chapter 1. Introduction

2. Scaffolding promotes user engagement. In a corporate setting,
a wiki article might require some permissions, be subject to
a deadline, belong to some wiki categories, or follow a given
template. All these aspects might not be directly related with
the article’s content as such, yet they frame the contribution.
Setting this frame is cumbersome and delays users in putting
their wheels in motion (e.g., start to edit the article). “Wiki
Scaffolding” permits this frame to be available by the time
contributors start their articles.

3. Scaffolding as a wiki map. The “rules of practice” that govern
a site (i.e., roles, access rights, templates, etc.) should be easily
accessible to newcomers. So far, this information is scattered
around the wiki, and frequently hidden in administrative pages.
At best, a README page can provide some textual description
of these practices. “Wiki Scaffolding” can play the role of
an initial “practice sitemap”. Newcomers can consult the
scaffolding to have an eye-bird view of the rules that govern
the wiki’s operation.

• How. “Wiki scaffolding” faces two main obstacles. First, it implies
an upfront investment before any content is provided. Second, it
requires knowledge about the wiki engine (e.g., MediaWiki1) and
third-party extensions, both outside the competences of the layman.
This will make “Wiki Scaffolding” yet another burden for the
organization’s IT department since most users will lack the required
skills. Akin to the wiki spirit, the scaffolding should be managed
by the users themselves. Therefore, both cost-effectiveness and
end-user affordability are main prerequisites for scaffolding to be
adopted. This advocates for the use of Domain-Specific Languages
(DSLs) [MHS05]. Furthermore, collaboration and easy sharing
can be promoted by using graphical DSLs (as opposed to textual

1www.mediawiki.org (accessed December 2012).

7

www.mediawiki.org

Improving Creation, Maintenance and Contribution in Wikis with DSLs

DSLs). Mind maps are popular diagrams that capture ideas around a
central topic [BG10]. This thesis capitalizes from this popularity,
and introduces a DSL described as a mind map to both capture
and enact “Wiki Scaffoldings”. Specifically, it is introduced the
Wiki Scaffolding Language (WSL) (pronounced “whistle”). WSL
is built as a plugin of FreeMind [Fre], a popular, open source tool
to create mind maps. Users create their scaffolding by drawing
mind maps. Next, users can “export” their mind map as a “Wiki
Scaffolding”: a new wiki is created along the lines of the directives
of the scaffolding (see a video of WSL at work at http://vimeo.
com/31548363). The source code, examples and installation
instructions can be found at http://www.onekin.org/wsl.
Alternatively, WSL source code is also available in the official
FreeMind code repository http://bit.ly/xsA040.

1.6 Problem Statement for Wiki Refactoring

• What. Wikis are becoming a mainstream for knowledge formation
and sharing [Ram06]. Consubstantial to knowledge formation is
exploration, tentative guessing and trial-and-error practices. That is,
knowledge formation goes together with regular knowledge revision.
In a wiki setting, this knowledge (i.e., the wiki content) and its
structure evolve with the supporting community. Michel Buffa
[BG06] quotes the discussion of wiki creator Ward Cunningham
along with Wikipedia founder Jimmy Wales, at Wikisym’05
conference, who explained the “wiki way” philosophy:

“A wiki is like a garden; users. . . must take care of it.

Start with some seeds and watch it grow, and the wiki will

become moderated by its users’ community. . . Do not impose

a rigid structure, users will refactor and structure the wiki as

it grows. . . ”

8

http://vimeo.com/31548363
http://vimeo.com/31548363
http://www.onekin.org/wsl
http://bit.ly/xsA040

Chapter 1. Introduction

In practice, this ends up in large structures of articles and
categories, which constantly need manual refactoring. Despite
the early identification of refactoring as part of the wiki’s
modus operandi, most efforts have been directed to facilitate
content editing while content refactoring has been largely
overlooked. In this regard, "Wiki Refactoring" is the process
of changing the wiki’s internal structure for the sake of
navigability, accessibility or comprehension, but the content
(and its authorship) is kept immutable.

• Why. The aim of wikis is an affordable approach to collaborative
knowledge formation and sharing. Wiki refactoring is certainly
part of the knowledge formation effort. For "Wiki Refactoring"
to be effective, it has to be affordable. Hence, this needs first to
systematize "Wiki Refactoring" (the “what”), and second, to assess
"Wiki Refactoring" affordances (i.e., a perceived opportunity for
action) for current wiki engines (the “how”). In software, refactoring
is a disciplined technique for restructuring an existing body of code,
altering its internal structure without changing its external behaviour
[Fow99]. As for wikis, this definition raises two questions: (i) how
the wiki structure can be altered i.e., the refactoring operations,
and (ii) what this “external behaviour” is i.e., the invariant to be
kept during "Wiki Refactoring". Operations include categorize (i.e.,
characterizing the page content with a category), split (i.e., dividing
the page content into two pages), merge (i.e., joining two pages into
a single one), etc. As for the invariants, good practices advise to
preserve wiki content and authorship2. Wiki refactoring can change
the wiki internal structure for the sake of navigability, accessibility
or comprehension, but the content and its authorship should be kept
immutable.

2http://en.wikipedia.org/wiki/Wikipedia_guidelines (accessed
December 2012).

9

http://en.wikipedia.org/wiki/Wikipedia_guidelines

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Unfortunately, these operations and invariants are frequently only
in the mind of the user with little support from the wiki engines
(e.g., MediaWiki). Wiki engines are primarily thought for spurring
editions but overlook refactoring. As a result, "Wiki Refactoring"
might become convoluted. For instance, merging/splitting two wiki
articles requires of at least five interactions in MediaWiki (the most
common wiki engine). In other words, the semantics of refactoring
is not natively supported by the wiki engine. The implications
are twofold. First, refactoring is left to the user interpretation.
Different users can face the same refactoring problem with different
strategies: the wiki engine does not ensure coherence among the
refactoring strategies used throughout the wiki lifespan. Second, the
engine does not ensure refactoring reliability. Refactoring operations
can be thought as database transactions in the sense that they
might comprise a sequence of wiki interactions that (i) should be
performed in an all-or-nothing manner, and (ii) should move the
wiki to a consistent state (i.e., wiki content must be preserved).
This operational semantics is certainly not supported in current wiki
engines but lives on the minds of the wiki users who need to delve
into the intricacies of the wiki engine.

• How. Those that know what to refactor (e.g., the knowledge workers
that know which articles to merge) might ignore how to refactor

(e.g., the operative that goes to properly merge two articles). As
pointed out in [HF12] when talking about the wiki openness

“this decentralized mode of governance is what has made

it possible for the all-volunteer wikipedian community to

collectively build and maintain the project. However, this

mode is often impenetrable for new editors who lack the

organizational literacies required to interpret and author texts

and traces.”

While cosmetic editing might require minimal familiarization

10

Chapter 1. Introduction

with the domain at hand, structural refactoring expects
deep knowledge about the wiki corpus and refactoring
principles. This work proposes to improve refactoring
affordances of knowledge workers (i.e., wiki contributors) by
lowering the participation barrier through the introduction of
a DSL. However, refactoring changes in the wiki structure
impact in readers and authors. Hence, we introduce
two dimensions of independence for wikis: (i) readership

independence. Refactoring does not alter the content but
how this content is distributed among articles or categories.
Wiki readers should be informed of where content has been
moved to. In addition, wiki articles are Web resources
users can bookmark. Hence, readership independence also
includes the ability for a wiki to preserve URL addresses
upon evolving articles/categories. And (ii) authorship

independence. Acknowledging the authorship has been
reported as a main motivator of contributions [ASR+10].
Wiki refactoring must preserve authorship. The output is
the WikiWhirl DSL, which supports wiki refactoring by the
rearranging of mind maps nodes. WikiWhirl preserves
the two dimensions of wiki independence, readership and
authorship. Results from a controlled experiment suggest
that WikiWhirl outperforms traditional wiki front-ends in
three main affordance enablers: global understandability,
productivity and automatic compliance of refactoring good
practices. WikiWhirl is available to download from Onekin3,
and its source code from Sourceforge4.

3www.onekin.org/wikiwhirl (accessed December 2012).
4http://sourceforge.net/p/wikiwhirl/code (accessed December

2012).

11

www.onekin.org/wikiwhirl
http://sourceforge.net/p/wikiwhirl/code

Improving Creation, Maintenance and Contribution in Wikis with DSLs

1.7 Problem Statement for Wiki Customization

• What. Web Augmentation is to the Web what Augmented Reality
is to the physical world: layering relevant content/layout/navigation
over the existing Web to customize the user experience. Examples of
what this technology generically enables include reorganizing page
content, supplementing page data, changing fonts and formats, etc.
[McF05, Fil06]. A popular example is the Skype add-on [Sky05],
a plugin that turns any phone number found in a web page into a
button that launches Skype to call that number. Another example is
LinkScanner [AVG10], an augmentation utility provided by AVG (a
popular anti-virus) that permits to scan search results from Google,
Yahoo! or Bing, and places a security rating next to each recovered
link, which informs about the trustworthiness of the site.

For a given website, Web Augmentation brings a kind of externalized
customization: users can tune the front-end of a website based
on their own needs. Therefore, wiki customization is the process
whereby users locally supplement wiki pages with their own content,
content obtained from other wikis or content obtained from other
websites. This process should be as easy as it is currently editing
wikis.

• Why. Wiki users could add local content to augment the raw content
of an article; or editors could add local annotations about the article’s
quality. Does this make sense? At first glance, the answer could
be negative since, unlike traditional websites, wikis permits users
to contribute with content right away. No need for an additional
customization tool. However, three rationales advice a more careful
look. First, personal knowledge management. Wikis’ freedom of
editing does not imply all editions becoming publicly available:
some editions should be backed by the community. In some case,
divergences might not be opinionated but reflect different goals to

12

Chapter 1. Introduction

be fulfilled by the article. In this setting, wiki customization might
offer a backdoor for people to do more personalized exploration
(hopefully followed by merging), instead of trying to converge on
a consensus. Second, directly editing a wiki and hence, exposed to
public scrutiny, might be too intimidating. Here, wiki customization
might account for a more personal and protected setting which can
eventually spur future contributions. Third, augmentation as an
annotation-like mechanism lowers the participation barrier. Between
reading and publicly contributing, augmentation can provide a
middle pier.

• How. Wiki Customization should be tuned to the “wiki way”. Wikis
are characterized as being open (i.e., edition is easily conducted
without even to require to log in), organic (i.e., wikis grow and
shrink dynamically along the desires of the community that uses and
natures them), and observable (i.e., changes are tracked and visible
to the rest of the community) [Cun02]. Likewise, augmenting wikis
should then be (i) affordable as the counterpart of open, i.e., the
complexity should be similar to that of writing a piece of wikitext,
(ii) modular as the counterpart of organic, i.e., augmentation code
should be provided in piecemeal fashion that might be eventually
enlarged or reduced at user’s wish, and (iii), shareable as the
counterpart of observable, i.e., your augmentation code should
be easy to understand, share and install by other members of
the community. With these requirements in mind, we introduce
WikiLayer, a plugin for Firefox that extends wikis rendering with
augmentation capabilities.

WikiLayer permits to declaratively (i.e., affordable) state layers
over articles in a piecemeal fashion (i.e., modular), where layer
sharing is limited to your acquaintance (e.g., Twitter followers) who
are only a click-away from locally installing their own copy of
the layer (i.e., shareable). WikiLayer has been contextualized for

13

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Wikipedia and can be found at http://webaugmentation.
org/wikilayer.xpi with samples5.

Next section summarizes the main contributions of this Thesis.

1.8 Contributions

Wiki Initialization

Firstly, we enumerate the specificities of moving to a corporate setting.
Then, this work introduces the notion of “Wiki Scaffolding” as a way to
create an initial blueprint for wikis. Finally, we tap into mind maps to come
up with a DSL to capture “Wiki Scaffoldings”.

Wiki Refactoring

This work collects and identifies the main operators in wiki refactoring to
give shape to a new DSL. In so doing, this DSL for “Wiki Refactoring”
preserves authorship and readership, while allows layman users perform
the refactoring operations by themselves in an easy and reliable manner.

Wiki Customization

In this approach, web augmentation emerges as the main enabler to wiki
customization. To this end, a tool blends the social knowledge with the
personal knowledge, introducing a personal perspective in wikis. The
approach is designed along wiki concepts to mimic the wiki way.

1.9 Design-Science as Research Approach

The design-science is a paradigm where knowledge and understanding
of a problem domain and its solution are achieved in the building and

5http://tinyurl.com/wikilayersamples (accessed December 2012).

14

http://webaugmentation.org/wikilayer.xpi
http://webaugmentation.org/wikilayer.xpi
http://tinyurl.com/wikilayersamples

Chapter 1. Introduction

Table 1.1: Design-Science Research guidelines as indicated in [HMPR04].

GUIDELINE DESCRIPTION

Guideline 1: Design-science research must produce a viable
Design as artefact in the form of a construct, a model,
an artefact a method, or an instantiation.
Guideline 2: The objective of design-science research is to develop
Problem technology-based solutions to important and relevant
relevance business problems.
Guideline 3: The utility, quality, and efficacy of a design artefact
Design must be rigorously demonstrated via well-executed
evaluation evaluation methods.
Guideline 4: Effective design-science research must provide
Research clear and verifiable contributions in the areas
contributions of the design artefact, design foundations,

and/or design methodologies.
Guideline 5: Design-science research relies upon the application
Research of rigorous methods in both the construction and
rigor evaluation of the design artefact.
Guideline 6: The search for an effective artefact requires utilizing
Design as a available means to reach desired ends while satisfying
search process laws in the problem environment.
Guideline 7: Design-science research must be presented effectively
Communication both to technology-oriented as well as management-
of research oriented audiences.

application of a designed artefact, whereby the boundaries of human and
organizational capabilities are extended [HMPR04]. Thus, the design-
science research cycle creates and evaluates artefacts intended to solve
identified organizational problems. Hevner et al. [HMPR04] propose
seven guidelines to conduct and evaluate design-science research in
Information Systems (see summary in Table 1.1). This dissertation follows
the design-science research approach along those seven guidelines to
ensure the relevance and effectiveness of the research. In so doing, the
contributions are put in the design-science context:

• Problem relevance. The Section 1.3 (Chapter 1) indicates what is the

15

Improving Creation, Maintenance and Contribution in Wikis with DSLs

general problem and why it is important, whereas the Sections 1.5,
1.6 and 1.7, describe the problem statement for Wiki Initialization,
Wiki Refactoring and Wiki Customization, respectively.

• Research contributions. This introductory Chapter 1, gives a
quick overview of the contributions in Section 1.8, whereas in the
Conclusions (Chapter 6, Section 6.2), the results can be seen in more
detail. For a complete description of the contributions, refer to the
main Chapters: Chapter 3 for Wiki Initialization, Chapter 4 for Wiki
Refactoring and Chapter 5 for Wiki Customization.

• Design as an artefact. The artefacts developed during this research
are WSL (Chapter 3), WikiWhirl (Chapter 4), WikiLayer (Chapter
5) and ScheMol (Appendix A).

• Design evaluation. WSL expressivity was evaluated by conducting
a literature review, and creating different case studies extracted
from the literature and real examples. In addition, the company
HalloWelt!6 is currently trying it to prove its viability in a real
setting and will provide feedback. WikiWhirl has been evaluated
in a controlled experiment by measuring fulfillment of refactoring
good practices, global understandability and productivity (Chapter
4). Finally, Cristobal Arellano is at the moment performing a user
evaluation of WikiLayer, to be included in his PhD. Regarding
ScheMol, it is being used in a real project with the company ISG7 ,
which provides real and valuable feedback for its improvement.

• Research rigor. The artefacts of this research follow the
development phases of a DSL as described by Mernik et al.
[MHS05]. Furthermore, the contributions of this thesis are based on
the state of the art related to wikis and open collaboration systems.

6http://www.hallowelt.biz (accessed December 2012).
7http://www.isg4.com (accessed December 2012).

16

http://www.hallowelt.biz
http://www.isg4.com

Chapter 1. Introduction

Figure 1.1: Chapter map.

• Design as a search process. The premises taken and the suppositions
made were based on the state of the art in wikis and open
collaboration settings. However, some contributions go further
“common wisdom” in wiki design, which would suggest (i) an
organic design approach begins with little planning but then refactors
the wiki when needed to address emerging needs. And, (ii) normal
wiki method would suggest a common access method for all users
to modify the wiki, thus avoiding “walled gardens”8.

• Communication of research. The significance of the findings
is demonstrated through publications in refereed conference
proceedings and journal articles (Chapter 6).

1.10 Outline

This Thesis consists of six chapters and five appendix. The Figure 1.1
shows the chapter map and the rest of this section gives an overview of
each of those chapters and appendices.

8Thanks to Christian Wagner for this appreciation.

17

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Chapter 2

This chapter describes the background on wikis and Model Driven
Engineering (MDE). These are the main topics on which this dissertation
is based on.

Chapter 3

This chapter addresses the following research question: how can corporate

strategies permeate wiki construction while preserving wiki openness and

accessibility?. To this end, the chapter introduces the notion of “Wiki
Scaffolding”, and advocates for the use of DSLs as the engineer means.
Specifically, we introduce the Wiki Scaffolding Language (WSL).

Chapter 4

This chapter poses the following research question: how to improve the

refactoring affordances of current wiki engines. In so doing, there are
contributions to the area of “Wiki Refactoring” by (i) formalizing a set of
refactoring operations, (ii) evidencing the limitation of current approaches
from an affordance perspective, (iii) proposing the use of mind maps
as a suitable concrete syntax to express refactoring, and (iv) providing
WikiWhirl as a proof-of-concept.

Chapter 5

This chapter raises the following research question: how could wiki

users enhance wikis with their personal knowledge or perspective?. In
this regard, this chapter presents WikiLayer as an augmentation tool.
WikiLayer provides a lightweight, seamless, client-based approach to
supplement existing wiki articles with additional content, potentially
brought from other websites (wikis or not).

18

Chapter 1. Introduction

Chapter 6

This chapter presents the main results, publications, future work and
limitations, concluding the Thesis.

Appendix A

This appendix introduces an approach for extracting models out of
database schemas. Concretely, by describing Schemol, a DSL that
considers Web2.0 specifics. Some examples are provided to show the
usefulness of Schemol when it comes to extracting models out of wikis.

Appendix B

This appendix shows a SQL script autogenerated by WikiWhirl for the
merge operation.

Appendix C

This appendix shows the questionnaire used in the user evaluation of
WikiWhirl to assess the MediaWiki knowledge of the participants prior
to the experiment.

Appendix D

This appendix presents the questionnaire used to evaluate the global
understandability of the participants in the WikiWhirl experiment.

Appendix E

This appendix exposes the final questionnaire used in the WikiWhirl
experiment to gather the final results.

19

Improving Creation, Maintenance and Contribution in Wikis with DSLs

1.11 Conclusions

In this chapter we have introduced the main issues, which will be discussed
during the presented thesis. Next chapter reviews the basic background that
is needed to situate the reader for the following chapters.

20

Chapter 2

Background

“If I had eight hours to chop down a tree, I’d spend six hours sharpening my axe.”

– Abraham Lincoln

2.1 Overview

This background chapter explains the basic topics on which this
dissertation is based, which lies the grounds for this dissertation, namely
wikis and Model Driven Engineering (MDE). The intention is to describe
the main ideas behind them, core definitions and brief introductions to
prepare the reader for the rest of the Thesis.

Wikis have already demonstrated their value as collaborative tools
and knowledge enablers. Model Driven Engineering is an established
software engineering approach. Both topics find their way together in this
dissertation, a background on both is, therefore, a must.

21

Improving Creation, Maintenance and Contribution in Wikis with DSLs

2.2 Wikis

The first Wiki, WikiWikiWeb1, was developed by Ward Cunningham in
1995. It was conceived to share ideas about software development and
patterns. Ward Cunningham describes a wiki as “the simplest online

database that could possibly work” [Cun02]. Its name comes from the
Hawaiian word “wiki”, which means quick or fast2. It refers to the wiki
content that is available in a quick and easy way.

Wikis are very popular primarily due to the success of the open
encyclopaedia Wikipedia. Some people may only be exposed to Wikipedia
and this may create a misconception about what a wiki is for. Wikipedia
is an open community wiki but wikis are also of increasing importance in
other domains, namely:

• E-government: Wiki government is a young area. Effective
governance in the twenty-first century requires collaboration and the
public sector is approaching innovation to design a more democratic
and collaborative government [Nov09].

• Education: Wikis in education are being used to support courses,
collaborative learning or to encourage student participation from
primary schools to Universities [TPP09, KMC11].

• Organizations: Wikis hosted by existing organizations are the
so called corporate wikis [MWY06]. Corporate wikis boost
collaboration and knowledge sharing among organization members.
In addition, they differ from other domain wikis in power
relationships, participant goals and content ownership [DS08].

Wikis are defined and motivated in the remainder of this section. Wiki
engines, successful case studies and current research issues finish the
background for wikis.

1http://c2.com/cgi/wiki?WikiWikiWeb (accessed December 2012).
2www.mauimapp.com/moolelo/hwnwdshw.htm (accessed December 2012).

22

http://c2.com/cgi/wiki?WikiWikiWeb
www.mauimapp.com/moolelo/hwnwdshw.htm

Chapter 2. Background

2.2.1 Definition

A wiki is a web-based software that allows all viewers of a page to change
the content by editing the page online in a browser [EGHW08]. Wikis
are supported by wiki engines and in general, store the wiki content in
databases (some wikis store the content in files e.g., DokuWiki). Wiki
design principles can be summarized as [Cun06]:

• Simple: It is easier to use than abuse.

• Open: If an incomplete or poorly organized page is found, readers
can edit it as they see fit.

• Incremental: It is possible and useful to cite pages that have not been
written yet.

• Organic: It means that wikis grow and shrink dynamically along the
desires of the community that uses and natures them.

• Mundane: Only a small number of text conventions is needed to
provide access to the most useful page markup for formatting.

• Universal: A writer is also an editor since the mechanisms of
organizing a wiki are the same as those of writing.

• Overt: The formatted output will suggest the required input to
reproduce it.

• Precise: Wiki page titles will be descriptive enough to avoid name
clashes.

• Tolerant: Inputs will produce outputs even when the output is not
the expected. This is preferred to errors.

• Observable: Wikis demand change tracking and peer-review
mechanisms. Thus, activity within the site can be watched and
reviewed by any other visitor (e.g., through a “recent changes” wiki
page).

23

Improving Creation, Maintenance and Contribution in Wikis with DSLs

• Convergent: The duplication and ambiguity of content should be
avoided, and that content related to similar within the wiki.

Wiki main components are the users and the content. Users are normally
divided into groups. In this way, user rights can be assigned to those user
groups. Wiki content is stored in wiki pages. A wiki page basically stands
for a canvas that permits easy editing. The bases of the wiki content are:

• Wiki text is text that uses wiki markup. Wiki markup denotes the
special syntax and keywords used by wiki engines to format text.

• Wiki article is the core concept of a wiki. It is an entry on the wiki
with information written on it. A wiki article usually contains links
to other wiki articles.

• Wiki category is a keyword or tag used to organize and locate articles
along the wiki. Adding a category to an article creates a link that
permits easy navigation from this page to other pages in that category
and, in so doing, facilitates browsing related articles.

• Wiki template is a special page whose content is intended to be
included in multiple pages. Its purpose is to offer a structuring
mechanism for homogenizing easily updatable content.

• Wiki talk pages or discussion pages are a special kind of pages used
to hold discussions about the content of the corresponding page.
With this mechanism, the content is kept separated from discussion
threads.

2.2.2 Motivation

Wikis have been outshone by its most known example: Wikipedia. In
2001 a website called Wikipedia asked people for collaboration to create a
free encyclopaedia and now, over ten years later, it has become the world
biggest encyclopaedia ever done. Not only that, Wikipedia statistics speak

24

Chapter 2. Background

for themselves: sixth most visited website according to Alexa’s top sites
3, over 400 million visitors every month, over 17 million articles in 270
languages4. Wikipedia represents an act of mass collaboration with over
100,000 people as global volunteers. But above all, it promotes the cause
of free knowledge for anyone on the planet. Nevertheless, wikis are more
than just Wikipedia as explained next.

Corporate Wikis

As previously mentioned, corporate wikis differ from wikis in other
settings (e.g., educational, public-access, etc.), and present challenges
when it comes to integrate them in an existing organization [GP10]:

• Companies are hierarchically organized and the common botton-up
approach does not naturally fit.

• These wikis usually work behind a firewall, so access may be
restricted outside the company.

• Companies require lasting information infrastructures but the
introduction of a new technology may be disruptive.

• There many internal factors affecting the original pace at which open
wikis work such as stringent constraints, document repositories,
complex communication channels or authority figures.

Even so, companies have realized the potential wikis have, and these
are being used for different organizational processes, reporting several
advantages [LDP+12]:

• Knowledge codification: Organizations utilize wikis as a means to
collect, codify and maintain corporate knowledge, and at the same
time, as a means to distribute this knowledge among the organization
members.

3http://www.alexa.com/topsites (accessed December 2012).
4http://wikimediafoundation.org/wiki/Wikipedia_

Celebrates_10_Years_of_Free_Knowledge (accessed December 2012).

25

http://www.alexa.com/topsites
http://wikimediafoundation.org/wiki/Wikipedia_Celebrates_10_Years_of_Free_Knowledge
http://wikimediafoundation.org/wiki/Wikipedia_Celebrates_10_Years_of_Free_Knowledge

Improving Creation, Maintenance and Contribution in Wikis with DSLs

• Communities of practice: Wikis present many capabilities for
customization and integration with existing technologies, allowing
to cater for learning activities within in-house communities of
practice. These communities benefit from larger networks of
informal knowledge sharing, which has a positive effect on the
knowledge and communication platforms of the organization.

• Interaction with third parties: Wikis may easily connect
organization members, customers, stakeholders, and so on, in
different ways: (i) help desk wikis provide external support in
corporate product or services, being an easy and up-to-date solution;
(ii) marketing and advertising through wikis reduces e-mail overload
and provide a direct engagement; and, (iii) enabling the public to
participate in news and publications actively involves the customers
with the organization.

• Information Systems (ISs) development and maintenance: Wikis
represent, not only an affordable alternative but also an effective
one for different tasks in ISs development and maintenance: IS
documentation (e.g., link code to documentation), software reuse
(e.g., same artefacts in different projects), requirements engineering
and elicitation (e.g., frequent changes need a dynamic mechanism),
or end-user programming (e.g., collaborative perspective).

• Management activities: In decision making processes, wikis provide
managers with a new source of information and an opportunity to
assess project risks beforehand. Regarding project management,
scheduling, planning and real-time tracking of activities (e.g., Trac a
wiki-based project management system5) are successfully integrated
within wikis. Wikis are also valuable tools for capturing and sharing
managerial experience.

5http://trac.edgewall.org/ (accessed December 2012).

26

http://trac.edgewall.org/

Chapter 2. Background

• Organizational response in crisis situations: Wikis can help to
overcome time lag among the different geographically spread groups
and assign roles among unit members. Wikis may also support cross-
unit collaboration and improve knowledge communication among
units.

2.2.3 Wiki Engines: MediaWiki

A wiki engine is the core software that runs a wiki. Most implementations
are written in PHP and require the presence of a database, commonly
MySQL. However, there are wiki engines written in Java, Python, Perl,
Ruby, etc., and based on PostgreSQL, Oracle, SQLite or even files instead
of a database. There are currently over 130 different wiki engines6 and the
most popular one is MediaWiki (based on the number of sites using it and
the number of downloads). This wiki engine has been selected in this work
for several reasons:

• It is maintained by the Wikimedia foundation, which supports about
800 wikis (e.g., Wikiquote, Wikinews, etc.) and Wikipedia. This
makes MediaWiki performance and scalability a major concern, thus
it is highly optimized.

• It has a devoted developer community from all around the world,
who organizes conference and meetings focused on development.
This ensures quick bug fixing and robust releases.

• Users can easily find assistance on the support desk, an official
mailing list, books, forums, and so forth.

• Hundreds of extensions are available to enhance the basic features
provided by MediaWiki.

6www.wikimatrix.org (accessed December 2012).

27

www.wikimatrix.org

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Figure 2.1: MediaWiki four layers architecture.

Figure 2.1 presents the four layered MediaWiki architecture7. Users
interact with the web browser (i.e., user layer), that fetches wiki pages
from the web server (i.e., network layer). The PHP engine (i.e., logic layer)
renders the pages dynamically, by first extracting the information from the
relational database back-end.

The current database schema (MediaWiki 1.19) contains 53 tables, but,
for the purpose of this Thesis, only 12 are described, mostly related with
page content and associated information. Figure 2.2 depicts (a partial view
of) the MediaWiki database schema: redirect table contains a record for
each page that is a redirect to other page; categorylinks and pagelinks

tables keep the links among categories and pages, respectively; category

table tracks all existing categories. In MediaWiki, something is a category
if there is a link to it of the type [[Category:NameOfTheCategory]], even
if it does not really exist (i.e., a link to a page that does not exist yet is
useful to indicate that a page will be created soon or should be created);
recentchanges table logs data about modifications on the wiki; page table
holds the description of pages no matter they realize articles, categories,
templates, discussions, etc; logging table keeps every log action (e.g.,

7www.mediawiki.org/wiki/Manual:MediaWiki_architecture
(accessed December 2012).

28

www.mediawiki.org/wiki/Manual:MediaWiki_architecture

Chapter 2. Background

Figure 2.2: MediaWiki database schema (partial view).

delete, restore, protect, etc.); searchindex table is used to provide text
searches; revision table stores metadata for every edition from wiki users;
archive table keeps information about deleted pages; text table holds the
wikitext of individual page revisions; and finally, user table stores all the
information about the wiki users.

2.2.4 Successful Case Studies

Wikis have succeeded in all the areas described above (Section 2.2). This
section shows successful cases for each of them.

Wikipedia on its own already represents a success of wikis. Even
though, there are many more open communities wikis, Wikipedia is on
the top ten world websites (sixth in Alexa’s ranking), with over 100,000
hits per second. It is worth noting that it is supported by a non-profit
organization, the Wikimedia foundation. Moreover, the funding comes
from donations and there is no advertising. This makes its success even

29

Improving Creation, Maintenance and Contribution in Wikis with DSLs

more remarkable in a market dominated by big multinationals.

Melbourne is one of the pioneers in e-government with its Future
Melbourne Wiki8. The aim of this wiki is drafting a ten year city plan
for the City of Melbourne. It has public consultation periods, where the
general public as well as council workers can collaborate together. After a
review [Gro09], several advantages were identified by the use of a wiki
as the enabling technology: (i) public participants performed hundreds
of contributions; (ii) successful management of collaboration between
general public and internal staff; (iii) participation was diverse and of
a high quality; (iv) easier to use than corporate intranets; (v) helped to
communicate and to share ideas and information, and so on.

Several organizations have successfully introduced wikis into their
intranets. Microsoft9 [GP10], IBM10 [Due08] or the FBI11 found in wikis
a way to capture and share the knowledge of their members.

Wikis are well suited to be used in education or learning environments.
The success in this domain can be indicated by the large number of
universities that have already implemented this technology12. The use of
wikis in education varies from encyclopaedias, support in courses, a way to
assess subjects or as shared spaces where students can collaborate together
[GKSK11, TLEC11].

Another successful case is Wikia13, which is a wiki hosting company
(i.e., a wiki farm). It has around 275,000 wikis and 45 million visitors each
month. Wikia revenues come mainly from advertising.

8www.futuremelbourne.com.au/wiki/view/FMPlan (accessed
December 2012).

9Micropedia http://news.cnet.com/8301-13860_3-9886332-56.
html (accessed December 2012)..

10Bluepedia http://www-03.ibm.com/press/us/en/pressrelease/
23218.wss (accessed December 2012).

11Bureaupedia http://fcw.com/articles/2008/09/26/
fbi-creates-knowledge-wiki.aspx (accessed December 2012).

12List of some university wikis http://universitywikinodewiki.wikia.
com/wiki/University-wikis (accessed December 2012).

13www.wikia.com (accessed December 2012).

30

www.futuremelbourne.com.au/wiki/view/FMPlan
http://news.cnet.com/8301-13860_3-9886332-56.html
http://news.cnet.com/8301-13860_3-9886332-56.html
http://www-03.ibm.com/press/us/en/pressrelease/23218.wss
http://www-03.ibm.com/press/us/en/pressrelease/23218.wss
http://fcw.com/articles/2008/09/26/fbi-creates-knowledge-wiki.aspx
http://fcw.com/articles/2008/09/26/fbi-creates-knowledge-wiki.aspx
http://universitywikinodewiki.wikia.com/wiki/University-wikis
http://universitywikinodewiki.wikia.com/wiki/University-wikis
www.wikia.com

Chapter 2. Background

2.2.5 Current Research Issues

This dissertation reflects on two main wiki principles, open and simple,
since they are not always so. Wikis are easy to edit but hard to (i)
initially set up (technical skills are required), (ii) restructure (tedious
and cumbersome process), and (iv) customize (all users see the same
content). This Thesis addresses these three challenges in Chapters 3 (Wiki
Initialization: Aligning Wikis with Organizations), 4 (Wiki Refactoring
through Mind Map Manipulation), and 5 (Wiki Customization through
Web Augmentation Techniques).

In addition, Lykourentzou et al. [LDP+12] identify several open
research issues, where the non-technical oriented ones are the most
challenging for researchers and can be summarized as follows:

• Assessment of the return on investment (ROI): This challenge is
interesting from a business point of view, and critical when it comes
to launch a new corporate wiki project.

• Identification of the success factors of a corporate wiki: There are
already some works [GP10, LDP+11] on this regard, but the proper
identification of these factors may affect the future of corporate
wikis. This issue can also be generalized to other domains (e.g.,
education or e-government).

Finally, Ward Cunningham has opened a new trend in wiki research:
Smallest Federated Wiki [Cun11]. His new vision of wikis innovates in
three ways:

“It shares through federation, composes by refactoring and
wraps data with visualization.”

In federated wikis, instead of editing a common wiki, each user has her
wiki, which shows and brings information from different sources (i.e.,
servers, websites, sensors, other (federated) wikis). Thus, in Cunningham
words “your pages and my pages don’t get mixed up at least we want to”.

31

Improving Creation, Maintenance and Contribution in Wikis with DSLs

The idea behind is that each user can tell her own story about the data.
This new trend will be subject of discussion and debate but certainly, also
of research.

2.3 Model Driven Engineering

MDE is a broad and consolidated approach used in all branches of
software engineering and it comprises other approaches. Model Driven

Development (MDD) is a software development approach in which the
focus and primary artefacts of development are models (vs programs)
and, is based on two time-proven methods: abstraction (realm of
modeling languages) and automation (realm of tools) [Sel07]. The
Object Management Group’s (OMG) initiative for MDD is the Model

Driven Architecture (MDA) [OMG] and proposes a set of standards.
Model Driven Engineering (MDE) is a broader trend that encompasses
the previous terms plus other tasks based on models such as Model

Driven Reverse Engineering (MDRE), Model Driven Interoperability

(MDI), Model Driven Web Engineering (MDWE), etc. This is graphically
represented by Ameller in his Master Thesis [Ame09] as seen in Figure
2.3, MDE is a superset of MDA, which is in turn a superset of MDD.

Thus, the superset of MDE represents a shift in the field of software
engineering. Bezivin [Béz04] suggests that similar to the object-oriented
principle “Everything is an object”, in model engineering, the basic
principle “Everything is a model” is key to identify the essentials of this
trend. MDE treats models as first class citizens as opposed to object
oriented programming, where objects are first class entities.

In short, the intention of MDE is to raise the level of abstraction in
program specification and increase automation in program development
[Bat06].

Next, MDE and its main components are defined and motivated. After
that, the main concepts related with MDE that appear throughout the
Thesis are described.

32

Chapter 2. Background

Figure 2.3: MDE is a broader term that encompasses other model based
initiatives.

2.3.1 Definition

Model Driven Engineering is a software engineering approach that
addresses platform complexity and the inability of third-generation
languages to alleviate this complexity and express domain concepts
effectively. For so doing, it combines (i) domain-specific modeling

languages (DSML). DSML are described using metamodels, which define
concepts and their relationships within a domain; and (ii) transformation

engines that use models to synthesize software artefacts [Sch06].

2.3.2 Motivation

The use of models as the primary development artefacts has reported
advantages in terms of productivity, quality, automation, standardization,
communication, portability, maintainability and interoperability [MD08a].
However, the lack of knowledge of how and when to use MDE may lead
to failure cases. Hutchinson et al. [HWRK11] illustrate MDE influences,
positive and negative, for the three main impact factors, namely:

33

Improving Creation, Maintenance and Contribution in Wikis with DSLs

• Productivity:

– Time to develop code. It is reduced by automatically generated
code but it may be increased when it comes to implement
model transformations and executable models.

– Time to test code. There are less common mistakes and the
testing can be performed to models directly. However, there
is an extra effort in model validation and testing of model
transformations.

– ROI on modeling effort. Modeling harnesses creativity
solutions and helps to understand the system as a whole.
Over-modeling or even increased complexity may be an added
problem.

• Portability:

– Time to migrate to a new platform. Models are independent of
the platform, needing only new transformation for a migration.
The implementation of new transformations also requires
effort.

• Maintenance:

– Time for stakeholders to understand each other. Models are
easier to understand existing systems but the generated code
may be hard to understand.

– Time needed to maintain software. The maintenance is done
at model level, reducing the time needed, and there is a trace
automatically created (from models to code). However, this
time may be increased to synchronize the models with the code.

MDE has to be applied in those contexts where it influences positively,
although it is not always easy to absolutely measure its benefits. Next, the
main elements of MDE are explained.

34

Chapter 2. Background

2.3.3 Models

Since MDE revolves around models, we need to address the central notions
about models. When “someone models” it means that she is representing
something (i.e., a system) using something else (i.e., a model) [MFBC10].
Therefore, the first step is to understand what a model is. OMG defines it
as [mem03]:

“A model of a system is a description or specification of that
system and its environment for some certain purpose. A model
is often presented as a combination of drawings and text. The
text may be in a modeling language or in a natural language.”

The main elements of this definition are: (i) a model is an abstraction or
simplified view of a system, (ii) with an initial purpose, and (iii) presented
in a (modeling) language. In this definition, it should be note that for
the language to be automated it must be defined in a modeling language.
Besides that, it is worth to highlight that the information contained by
models has an initial intention or purpose, although it can be later reused
for some other intention [MFBC10].

Seidewitz [Sei03] differentiates between descriptive models, when the
model is used to describe a system under study (SUS), or specification

models, when it is used to specify an SUS or a class of SUS. Thus, models
are categorized whether they are earlier or later than the system.

The key characteristics a model must fulfil to be useful and effective,
are described by Selic [Sel03] as:

• Abstraction: The essence can be easily understood by removing
or hiding details, obtaining a model as a reduced rendering of the
system.

• Understandability: A model must be easier to understand than the
modeled system. What remains after abstracting the model away,
must be presented in a notation that appeals to intuition.

35

Improving Creation, Maintenance and Contribution in Wikis with DSLs

• Accuracy: A model must be a realistic representation of the modeled
system’s features.

• Predictiveness: A model should allow to correctly predict the
modeled system’s interesting but nonobvious properties, either
through experimentation or formal analysis.

• Inexpensive: A model should be significantly cheaper to construct
and analyze than the modeled system.

As previously stated, a model is presented in a modeling language; this
language is in turn defined by a model, called metamodel. A model
conforms to a metamodel in the same way that a computer program
conforms to its grammar, or a XML conforms to its XML Schema. Next
section defines metamodels.

2.3.4 Metamodels

OMG defines a metamodel [mem03] as:

“A model of models.”

Even though this is a scarce definition, one can sense the “meta” nuance of
“modeling a model”. OMG also defines a metamodel [OMG02] as:

“A metamodel is an “abstract language” for describing
different kinds of data; that is, a language without a concrete
syntax or notation.”

The main elements of this definition are: (i) a metamodel defines a
language to represent data of a concrete domain, and (ii) it has no specific
syntax (i.e., it is abstract). Thus, a metamodel is a language for models
adapted for a certain domain. On the other hand, if the intention is to
create an executable language for that domain, other elements complement
metamodels to obtain that language. This language is called a Domain

Specific Language (DSL). Next section delves into further details on DSLs.

36

Chapter 2. Background

2.3.5 Domain Specific Languages

This section describes what a Domain Specific Language (DSL) is and its
components, development phases and several advantages reported in the
bibliography.

A DSL is defined by van Deursen et al. [vDKV00] as:

“A domain specific language (DSL) is a programming
language or executable specification language that offers,
through appropriate notations and abstractions, expressive
power focused on, and usually restricted to, a particular
problem domain.”

Vallecillo [Val10] recalls that the definition of a DSL (or Domain Specific

modeling Language DSML) has three main parts: (i) the domain concepts
and the rules that constraint them i.e., the abstract syntax, (ii) the notation
used to represent these concepts i.e., the concrete syntax and, (iii) the
semantics of the language:

• Abstract syntax: It is usually defined using a metamodel, which
describes the concepts of the language, the relationships among
them, and the structuring rules that constrain the model elements
and their combinations in order to respect the domain rules.

• Concrete syntax: It comprises a mapping between the abstract
syntax and its visual (more intuitive) or textual (more expressive)
representation.

• Semantics: It defines the meaning and it may be represented as
a metamodel. In practice, the semantics are not always explicitly
defined.

The development phases of a DSL are described by Mernik et al. [MHS05]
as:

37

Improving Creation, Maintenance and Contribution in Wikis with DSLs

• Decision: An initial decision has to be made whether to use a
General Purpose Language (GPL), develop a new DSL or reuse an
existing one (if possible, this would be the best option since there is
no need to invest resources, both economical and human expertise,
in its development). The investment of develop a DSL has to pay
for itself by subsequent less expensive systems development and
maintenance.

• Analysis: In this phase, the domain knowledge is identified (e.g.,
concepts, descriptions, terminology, scope, etc.). A main outcome
of this analysis is a feature diagram, which serves to state the
commonalities and variabilities of the domain at hand, so that
commonalities are built-in into the DSL engine whereas variabilities
are supported as parameters to be set by the DSL user.

• Design: Two orthogonal dimensions are taken into account:
relationships between the DSL and the existing languages, and
the formal nature of the design description. The former
distinguishes if an existing language is used (piggyback), is restricted
(specialization) or is extended with new features (extension). The
latter refers to an informal design in natural language or a formal

design with a grammar, regular expressions, etc. A corollary here is
“design only what is necessary”. In this phase, the domain concerns
have to be formalized in an abstract (i.e., DSL metamodel) and one
or more concrete syntaxes (textual or visual).

• Implementation: Authors identify seven patterns for executables
DSLs: interpreter, compiler/application generator, preprocessor,
embedding, extensible compiler/interpreter, commercial off-the-self
(COTS) and hybrid (a combination of the previous approaches).
More details about each one of them can be found in [MHS05].

• Deployment: During this phase, end-users (e.g., domain experts)
utilize the DSL for the specification of domain models.

38

Chapter 2. Background

In addition, Visser [Vis07] adds a sixth phase to the cycle:

• Maintenance: When new requirements (or any other kind of
software evolution) need to be reflected, the DSL has to be updated.

As for the motivation of adopting DSLs as opposed to GPLs, DSLs may
present several advantages [vDKV00, Cza05] :

• DSLs provide abstractions of the problem domain. Thus, domain
experts can understand, validate, modify, and even develop the
programs by themselves.

• DSLs give a natural notation (i.e., concrete syntax) for the domain at
hand; this avoids syntactic clutter of GPLs.

• DSL programs are concise, self -documenting and can be reused for
different purposes.

• DSLs enhance productivity, reliability, maintainability and
portability.

• DSLs have domain knowledge embedded, enabling the conservation

and reuse of this knowledge.

• More errors (error checking) can be found with static analyzers and
report the errors in a language more familiar for the domain expert.

• The code can be optimized based on domain-specific knowledge.

• The domain-specific knowledge explicitly captured by the DSL can
be used to improve developer tools.

Transformations are very important components of MDE. Next section
provides more details on this regard.

39

Improving Creation, Maintenance and Contribution in Wikis with DSLs

2.3.6 Transformations

OMG defines a model transformation [mem03] as:

“Model transformation is the process of converting one model
to another model of the same system.”

MDE is not only applicable for (i) creating new software systems, but it
can also be used for (ii) modernizing or reengineering existing systems
[ADM, UN10]. The former implies developers to create abstract models
describing the system. These models are then transformed to generate
new software artefacts (e.g., source code, documentation, models). The
latter first requires model harvesting (a.k.a. model extraction), i.e.,
the process whereby models are obtained from other software artefacts
(e.g., code, databases, spreadsheets, etc.) [IM10, RGvD06]. In both
approaches, model transformations are key in the process, allowing to
(semi) automatically create software artefacts or to reengineer existing
ones.

Figure 2.4 shows the basic concepts involved in model transformations.
A transformation is defined with respect to a source (or input) metamodel
and a target (or output) metamodel. The transformation engine is in charge
of executing tranformations. The transformation uses concrete models,
which conform to their metamodels. It is also possible to have several
source (or input) and target (or output) metamodels in a transformation.

It is worth distinguishing the top level categories of transformations
[CH06]:

• Model-to-text (m2t): A model to text transformation has strings as
output, which are used to generate system artefacts (e.g., java code,
XML descriptors, etc.).

• Model-to-model (m2m): This kind of transformation generates
models conformant to their target metamodel.

• Text-to-model (t2m): This sort of transformation parses source code
to extract models from existing system artefacts.

40

Chapter 2. Background

Figure 2.4: The basic concepts of a model transformation are the source
and target model and metamodels, the transformation engine and the
transformation definition.

Following section describes OMG’s layered framework for metamodeling,
which presents models at different levels of abstraction and their
relationships.

2.3.7 The Four Layer Architecture

The classical framework for metamodeling of the OMG [OMG02] is
based on a four layer architecture: (i) the described data is found in the
information layer. (ii) The model layer describes data in the information
layer. (iii) The metamodel layer is comprised of the descriptions that define
the structure and semantics of the models. (iv) The meta-metamodel layer
describes the structure and semantics of the metamodels.

Bezivin [Béz04] renames this architecture as 3+1 layer and he
illustrates it as in Figure 2.5. The M0 layer is the modeled system in the
real world. The next layer, M1, is where a model represents the system.
A model conforms to its metamodel, which is defined in the M2 layer.
A metamodel in turn, conforms to its meta-metamodel in layer M3. The
meta-metamodel conforms to itself. A layered architecture is commonly
used to define the relationships among languages and models involved in
a particular Technical Space (TS) [KBA02], therefore, technical spaces are
explained next.

41

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Figure 2.5: The four layer architecture revisited by Bezivin.

2.3.8 Technical Spaces

A TS is defined [KBA02] as:

“A working context with a set of associated concepts, body of
knowledge, tools, required skills, and possibilities.”

Examples include the XML TS, the database TS, the modelware TS, the
Eclipse modeling Framework (EMF) [EMF] TS, OMG/MDA TS and so
on. As stated in [BK05], “bridging technical spaces is especially useful

when it brings new capabilities not available in a given space”.
The Figure 2.6 shows OMG’s layered architecture realized for the

modelware TS and the relational database TS. Following a bottom-up
description, both TSs start with real-world entities (a.k.a. Universe of
Discourse in database parlance). This “real world” is captured in terms of
data that becomes tuples or models (layer M1). This data is collected along
some established descriptions as captured by the database schemata or the
metamodel (layer M2). Finally, languages exist to describe M2 artefacts
(layer M3), e.g., SQL grammar for describing database schemas, or either
Ecore or EMOF to specify metamodels within EMF.

OMG’s standard framework MDA [OMG] uses Unified modeling

Language (UML) as its language (layer M2). UML conforms to its

42

Chapter 2. Background

Figure 2.6: The four layer architecture for the relational database and
modelware Technical Spaces.

meta-metamodel known as Meta Object Facility (MOF) [OMG02]. MOF
defines an abstract language and a framework to specify, construct and
manage technology neutral metamodels.

Bezivin and Kurtev [BK05] motivate the study of technical spaces (TS)
with two observations:

• Even though technical spaces present differences purposes, they
have common characteristics. Capturing and studying these
commonalities help to understand and compare new technical
spaces.

• Technical spaces show complimentary features. Being aware of the
strengths and weaknesses of each technology allow to collaborate
between different techniques to solve problems at hand.

As in Vallecillo’s “village metaphor” [Val08], crossing the (semantic)
bridges of the different technical spaces can help to get the best of all
worlds. Thus, tools, knowledge or any possibility can be interoperated

43

Improving Creation, Maintenance and Contribution in Wikis with DSLs

through model driven techniques. Next section describes Model Driven

Interoperability (MDI) in more detail.

2.3.9 Model Driven Interoperability

According to ISO9126 [ISO], interoperability refers to the ability to
exchange and use information from different systems to enable them to
operate effectively together.

MDI uses models as key artefacts for enabling and achieving
interoperability between systems and artefacts, namely: data sets, services,
event systems, languages, tools, technological platforms, and so on
[BSV10].

A task force created within the network of excellence INTEROP-

NoE (Interoperability Research for Networked Enterprise Applications

and Software14), published an MDI proposal [JPBB07]. In this proposal
is described how a model driven approach can solve interoperability
problems by introducing different levels of abstraction among enterprise
models.

The ATHENA MDI Framework [ath] provides guidelines about how
MDE approaches can be applied in achieving interoperable enterprise
software systems. As Sun et al. [SDJ+08] state “each specialized tool

contributes to a crucial step in the development process”. Authors also
highlight benefits learned from applying model transformation to the
tool interoperability problem, such as separation of concerns across the
integration process and adaptability and extensibility in defining new tools,
among others.

Next section provides examples of successful cases studies on the use
of MDE.

14http://interop-vlab.eu/ (accessed December 2012).

44

http://interop-vlab.eu/

Chapter 2. Background

2.3.10 Successful Case Studies

Many success stories on the use of MDE are not public because they
involve a competitive advantage over their competitors. However,
some other successful case studies have been reported on a variety of
organizations. A review of industry experiences can be found in [MD08b].

In a case study [Men], it is shown an improvement from 670 days
(using a traditional iterative/incremental approach) to 171 (using Mendix15

modeling platform) in a project programming in Java.

Motorola has been automating code generation from models for over
15 years [BLW05], in addition to using test models for automatic test
generation. Even though issues were found, benefits are outstanding:

• 33% reduction in the efforts required to develop test cases.

• Network elements in some projects achieved 65%-85% code-
generation.

• 30X-70X reduction in time to correctly fix a defect found during
integration testing.

• 1.2X-4X overall reduction in defects and 3X improvement in phase
containment of defects.

• 2X-8X productivity improvement when measured in terms of
equivalent source lines of code (LOC).

Finally, OMG [OMG] also reports success stories on the use of MDA
of organizations like ABB, Siemens, Daimler Chrysler, Deutsche Bank,
Lockheed Martin among others.

Deutsche Bank highlights the use of MDA with benefits like: (i)
promote the coexistence of diverse technologies, which allows for
evolutionary development, (ii) decouple the business logic from the

15Mendix www.mendix.com is a software company with over 75 employees.
(accessed December 2012).

45

www.mendix.com

Improving Creation, Maintenance and Contribution in Wikis with DSLs

technological details of the implementation, allow to flexibly respond to
technology changes, or (iii) savings amounted to 40% compared to normal
development.

Lockheed Martin explains other benefits like: (i) application models
are platform independent so they can be reused, (ii) modellers are isolated
from software and hardware details thus, they can concentrate on the
problem space, or (iii) generation of code eliminates manual coding, which
eliminates defects traditionally introduced in the coding phase.

2.3.11 Current Research Issues

During a plenary session in the MoDELS workshop “Challenges in Model-

Driven Software Engineering” [SMB08] the participants identified the
following major challenges in MDE:

• Model quality. The necessity to deal with quality aspects in
modeling and MDE.

• Run-time models. Several challenges arise such as representing
dynamic behaviour, relation with static models, maintainability of
such models, and so forth.

• Requirements modeling. How to model requirements, integrate
requirements specifications into modeling, or traceability between
requirements and models are challenges still to tackle.

• Standards and benchmarks. There is a need for standards and
benchmarks in order to compare tools and approaches.

• Modeling languages. Although this is one of the main research
topics, some questions remain open, like how to support better
modularity in MDE, or how to deal with multi-models.

• Domain-specific modeling. Here arise challenges such as how
to develop and integrate models using different domain-specific

46

Chapter 2. Background

modeling languages (DSMLs), how to increase reuse across different
DSMLs, and so on.

• Empirical analysis. How to deal with the trade-offs between
realism and control or how to obtain adequate estimations for MDE
processes.

• Model verification and validation. Challenges include how to verify,
validate, debug and test models and generated code; automatically
generate test cases from models; or, support formal verification of
models.

• Process support. Questions here include: how existing process
embrace MDE; how to teach MDE; or, how to incorporate MDE
environments to MDE processes.

• Fuzzy modeling. Models are not always complete and some
inconsistencies need to be tolerated, which leads to deal with
imperfect, incomplete, imprecise, ambiguous or inconsistent
models.

• Industrial adoption. Research of negative and positive industrial
cases is basic for the engineering aspect of MDE. Technological
threshold, learning curve, legacy code and return of investment are
vital topics when it comes to adopt MDE in the industry.

• Formal foundations. Verification and validation needs to be done
in a way that the user of the modeling environment does not need
expertise in the different formalisms and techniques for verification.

• Scalability issues. MDE community must focus on (i) intrinsic
scalability issues for MDE, (ii) what elements of MDE do not scale
well and why, and (iii) scalability problems for MDE that cannot be
addressed with solutions of other software engineering domains.

47

Improving Creation, Maintenance and Contribution in Wikis with DSLs

• Models consistency and co-evolution. Systems evolve, so do
models and metamodels. A major challenge is to assess the
impact of changes in models, metamodels and generated artefacts.
Support for inconsistencies, model-code synchronisation and round-
trip engineering is another open research question.

2.4 Conclusions

During this chapter a background on wikis and Model Driven Engineering
has been given, as the basis for understanding the content of this thesis.

The aim was to introduce the reader to the notions presented in the
following chapters. We refer to the cited articles for further details on any
of the mentioned topics.

48

Chapter 3

Wiki Initialization: Aligning
Wikis with Organizations1

“Imagination is more important than knowledge. For knowledge

is limited, whereas imagination embraces the entire world,

stimulating progress, giving birth to evolution.”

– Albert Einstein.

3.1 Overview

Wikis are main exponents of collaborative development by user
communities. These communities may already exist (e.g., company
employees in corporate wikis) or may be created around the wiki itself
(e.g., community of contributors in Wikipedia). In the former case, the
wiki is not created in a vacuum but as part of the information ecosystem
of the hosting organization. As any other Information System resource,
wiki success highly depends on the interplay of technology, work practice
and the organization. Thus, wiki contributions should be framed along the

1Parts of this chapter have been previously presented [DP11a, DP11b, DP12].

49

Improving Creation, Maintenance and Contribution in Wikis with DSLs

concerns already in use in the hosting organization in terms of glossaries,
schedules, policies, organigrams and the like.

This chapter addresses the following research question: How can

existing corporate strategies permeate wiki construction while preserving

wiki openness and accessibility? To this end, we introduce the notion
of “Wiki Scaffolding”, i.e., a wiki installation that is provided at the
onset to mimic these corporate concerns: categories, users, templates,
articles that are all initialized with boilerplate text and are introduced
in the wiki before any contribution is made. We propose the use of
DSLs as the engineereering means. To retain wikis’ friendliness and
the capability to engage layman participation, we propose scaffoldings

to be specified as mind maps. Mind maps are next exported as wikis.
We show the feasibility of the approach introducing the Wiki Scaffolding

Language (WSL, pronounced “whistle”). WSL has been implemented as a
plugin for FreeMind [Fre], a popular, open source tool for mind mapping.
Hence, WSL expressions are mind maps. Mind maps are diagrams that
capture ideas around a central topic [BG10]. Our bet is that users may
have already been exposed to mind maps, and even to FreeMind, hence
reducing the learning curve for WSL. Through a single click, the WSL
plugin for FreeMind generates the wiki along the lines of the scaffolding
specification.

The WSL source code is available in the official FreeMind’s GIT
repository http://bit.ly/xsA040, and it is open to contributors.
Additional information, installation instructions and a video showing WSL
at work are available at http://www.onekin.org/wsl and http:
//vimeo.com/31548363.

The structure of this chapter follows the development phases of a DSL
(as described in Chapter 2): decision (Section 3.2), analysis (Section
3.3), design (Section 3.4), implementation (Section 3.5) and deployment
(Section 3.6). Finally, a discussion through the related work (Section 3.7)
and conclusions (Section 3.8) end the chapter.

50

http://bit.ly/xsA040
http://www.onekin.org/wsl
http://vimeo.com/31548363
http://vimeo.com/31548363

Chapter 3. Wiki Initialization: Aligning Wikis with Organizations

3.2 WSL Decision

The decision in favour of developing a DSL is based on some decision

patterns as identified by Mernik [MHS05]. A decision pattern is a common
situation that developers may find themselves for which successful DSLs
have been developed in the past. Behind them there are two general
interrelated concerns: (i) improved software economics, and (ii) enabling
of software development by end-users. In this regard, “Wiki Scaffolding”
faces two main obstacles. First, it implies an upfront investment before
any content is provided. Second, it requires knowledge about the wiki
engine (e.g., MediaWiki) and third-party extensions, both outside the
competences of the layman. This will make “Wiki Scaffolding” yet another
burden for the organization’s IT department since most users will lack
the required skills. Akin to the wiki spirit, the scaffolding should be
managed by the users themselves. Therefore, both cost-effectiveness and
end-user affordability are key enablers of this approach. Based on these
two concerns, it advocates for the use of a DSL. Furthermore, given the
non-technical nature of the users, collaboration and easy sharing can be
promoted by using a visual DSL (as opposed to a textual DSL), which are
regarded as more intuitive. Therefore, we advocate for introducing a visual
DSL based on mind maps to both capture and enact “Wiki Scaffoldings”.

In addition, the following decision patterns seem to fit well for “Wiki
Scaffolding” as a DSL:

• Task automation: In tedious tasks (e.g., implementation) that follow
the same pattern, a DSL can generate the required code. The tasks
required for initializing a wiki (e.g., create several categories) are
repetitive and can be executed through SQL statements against the
wiki database.

• Data structure representation: Data structures whose complexity
may make them difficult to write and maintain are easily expressed
with a DSL. A wiki may become a very complex data structure and

51

Improving Creation, Maintenance and Contribution in Wikis with DSLs

representing it as a mind map simplifies its understanding by end-
users. Besides that, capitalizing on an existing mind map tool (e.g.,
FreeMind) avoids the implementation of a graphical interface and
consequently its development cost.

• System front-end: A DSL front-end may be used to configure and
adapt a system. A DSL may embed all the elements needed for the
initial wiki configuration, including extensions, restrictions and user
configurations.

The above decision patterns show the appropriateness of a DSL for the
development of “Wiki Scaffoldings”.

3.3 WSL Analysis

It is important to note that a scaffolding is “piece of code”, i.e., a wiki
installation. “Pieces of code” that support scaffoldings for different
companies would be different, yet they share a family likeness. That
is, they belong to the same domain: “Wiki Scaffolding”. This section
identifies the scope and main abstractions behind this domain. The aim
is to capture both the company’s work practice and settings as long as they
impact on wiki operations. A main outcome of this analysis is a feature

diagram that describes the domain concepts and their interdependencies. A
feature is a prominent and distinctive user visible characteristic of a system
[KCH+90]. In classical conceptual modelling, concepts are described
by listing their features (i.e., attributes), which differentiate instances
of a concept. In software engineering, software features differentiate
software systems. Software system features are not only related to user-
visible functional requirements of the system, but also related to non-
functional requirements (i.e., quality attributes), design decisions, and
implementation details [WLS+07].

In a DSL context, a feature diagram serves to state the commonalities
and variabilities of the domain at hand, so that commonalities are built-in

52

Chapter 3. Wiki Initialization: Aligning Wikis with Organizations

into the DSL engine whereas variabilities are supported as parameters to
be set by the DSL user [MHS05]. To the best of our knowledge, the notion
of “Wiki Scaffolding” has not yet been the subject of a systematic study.
Therefore, we need first to quantify the problem statement, and next, to
precisely synthesize the main concerns. This entails to assess the extent to
which the wiki community suffers the traditional approach, and determine
which would be the corporate aspects that, if available at the wiki onset,
would have made a change. This is the topic of the next subsection.

3.3.1 The Need for Wiki Scaffolding

To the best of our knowledge, the notion of “Wiki Scaffolding” for wikis is
rather new. We firstly need to collect evidences that suggest the necessity
of scaffolding, even if they do not term it that way. To this end, we
conducted a literature review on wiki usage in organizations. Next, we
provide those seven cases that more clearly seems to suggest the need for
scaffolding in wikis. The aim is to provide vivid examples outside our
own experience, which sustain this work. We have also included wikis
in educational settings because they sit in-between organizational and
open wikis, offering some pre-existing context but with less demanding
constraints than companies.

“Using Wiki Technology to Support Student Engagement: Lessons from

the Trenches” [Col09]. This paper reports on a failed experiment to use
wiki technology to support student engagement. 37% of the students
cited difficulties with the use of the technology. Authors conclude that
“had greater instructional scaffolding be provided, in the form of lab-

based exercises and the creation of an accompanying instruction handout,

then maybe some of those students that experienced technical difficulties,

or self-confidence issues, would have posted to the class Wiki”. “Wiki
Scaffolding” can help to readily provide (i) wiki templates that guide and
advice student contributions, or (ii) wiki categories along the terminology
set at the classroom.

53

Improving Creation, Maintenance and Contribution in Wikis with DSLs

“Designing Knowledge Management Systems for Teaching and

Learning with Wiki Technology” [RRO05]. This case study reports on the
use of wikis to support collaborative activities in a knowledge management
class at a graduate-level information systems course. The authors indicate
that “Wiki technology can be used as a collaborative learning technology,

but a lot of design needs to be done before bringing it into the classroom”.
The paper indicates that “the initial findings suggest that effective... use of

a wiki... is contingent upon familiarity of both students and instructors with

the technology, level of planning involved prior to system implementation

and use in class”. This ending is particularly insightful for our purpose: the
need of planning prior to system implementation is regarded as a success
criterion. This is what “Wiki Scaffolding” is for.

“Using Wiki to Support Constructivist Learning: A Case Study in

University Education Settings” [TPP09]. Here, the aim is threefold: the
assessment of learning, the monitoring of student participation, and the
need for communication support in the learning process using wikis.
For the purpose of the work presented in this dissertation, we notice
the importance given to communication and how basic wiki mechanisms
seems to fall short: “communication problems seemed to be a hinder to

the writing of the wiki” while “groups which communicated more actively

achieved better results, both in terms of quantity and quality”. The authors
finally resort to create “an external discussion forum and encouraged

students to use it to discuss and coordinate the development of the wiki”.
This seems to suggest that communication design should be included as
part of the “Wiki Scaffolding”. In addition, it is reported that at times it
was difficult to know who was supposed to do what. Some anxiety about
the end result was also a concern for many students. Both remarks hint to
the need of an existing context where to frame the contributions.

“Did You Put It on the Wiki? Information Sharing through Wikis in

Interdisciplinary Design Collaboration” [Phu09]. This paper explores the
use of wikis in software development projects. The author states that
“the project wiki was created by the project manager a few weeks after

54

Chapter 3. Wiki Initialization: Aligning Wikis with Organizations

the project started. At the beginning of the project, the project manager

created a project definition page, which contained important information

about the project such as goal, project team members, stakeholders,

project description, success criteria, high-level schedule, deliverables, and

communication plan. The document was reviewed and accepted by all

team members”. This suggests the collaborative production of a blueprint
for the wiki but, in this case, this blueprint has to be manually turned into
a wiki installation.

“A Wiki Instance in the Enterprise: Opportunities, Concerns and

Reality” [DS08]. This work reports on ResearchWiki, a wiki that supports
yearly planning work by members of a globally distributed, research
organization. The authors point out that users “preferred to use their

project-specific repositories for recording progress in their projects rather

than using the ResearchWiki. In many cases these repositories pre-dated

the ResearchWiki and had evolved to support the operational needs of

particular projects. This included access control as in many cases their

project partners were from outside the research division and had not been

given access to the ResearchWiki”. This highlights the role of the wiki as
part of the information ecosystem, and the fact that companies tend to have
stringent access control policies.

“Enterprise Wikis - Types of Use, Benefits and Obstacles: A Multiple-

Case Study” [ST11]. The study highlights a main factor for wiki success:
“a sufficient number of wiki-articles must exist right from start. Only then

will employees perceive and accept the wiki as a useful knowledge base”.
This suggests the role of scaffolding as a way to engage users. In addition,
“first wiki properties and wiki structures had been eagerly discussed within

internal group meetings, but no strict definitions arose”. This hints the
notion of blueprint. Finally, “the ‘built-in’ simplicity of the wiki-software

is rather a minimum requirement than a success factor”. Besides content
editing, simplicity should also be sought in setting up an environment that
helps in matters other than editing (e.g., category setting or permission
restrictions).

55

Improving Creation, Maintenance and Contribution in Wikis with DSLs

“Planning for a Successful Corporate Wiki” [LDP+11]. Based on thirty
case studies, this work aims to identify the key factors that affect the
success of a corporate wiki. This analysis considers both technological
and cultural aspects of wiki adoption. As for the purpose of the work
presented in this dissertation, the following success factors are identified:
(i) Bottom-up knowledge sharing culture, scaffolding might help to involve
different stakeholders at the very beginning on the search for a balance
between free, bottom-up participation and the alignment with the corporate
strategies; (ii) content structure to avoid difficulties during navigation

and information retrieval, create a basic initial structure may help users
to avoid the empty-wiki syndrome, and provide an early, global view of
the wiki goals; (iii) mechanisms to inform users of changes, e.g., RSS

feeds or email might complement wiki offerings, and (iv) pre-populating

with existing content. The latter highlights the importance of providing
direction settings [ZKK12]. When different people participate, it might
not be clear who has to do what. Highlighting specific tasks at the onset in
terms of articles to be written (e.g., related to hallmarks already scheduled)
might help to spur people to start contributing.

3.3.2 Setting the Features

The previous subsection provides empirical evidence for scaffolding.
These insights are now made precise in terms of features. Figure 3.1
depicts the feature diagram for “Wiki Scaffolding”. The diagram states that
a “Wiki Scaffolding” captures the company settings in terms of existing
documentation practices, communication means, restrictions, the existing
organigram and finally, presentation concerns. The rationales for these
features should be sought in the previous quotations as well as our own
experience. Next paragraphs introduce each feature:

• Documentation Setting. A common problem for open communities
is that of fixing a common terminology and understanding.
This is easier in the case of corporate wikis where glossaries,

56

Chapter 3. Wiki Initialization: Aligning Wikis with Organizations

Figure 3.1: Feature Diagram. Different corporate settings are identified as
impacting wiki operation.

documentation, guidelines or even some content might already exist.
This setting needs to be captured in wiki terms. A basic classification
of wiki pages is that of articles, categories and templates. Articles
stand for the content that is incrementally and collaboratively edited.
Next, categories are commonly used as tags to easily locate, organize
and navigate among articles. Corporate glossaries can help to
identify initial wiki categories. Finally, templates provide content
to be embedded in other pages. Through parameterization, they
permit to reuse and ensure a formatted content along distinct pages.
Corporate guidelines can then be re-interpreted as wiki templates
that guide article editing.

Figure 3.1 depicts glossary, content and guideline as three features
of the company’s documentation practices that can impact the wiki.
Moreover, wikis frequently support ongoing projects where project
milestones might need to be accounted for by the wiki. This does
not apply to other settings where content is the result of free-willing
participation and hence, contribution is not tight to set schedules.
Wiki wise, this implies that event is a semantically meaningful piece
of data, and so should it be markuped and rendered (e.g., through a
calendar).

57

Improving Creation, Maintenance and Contribution in Wikis with DSLs

• Communication Setting. Wikis are an effective mechanism to
support knowledge formation. This implies the existence of
coordination and conflict resolution strategies. When wikis are
deployed in an existing organization, wikis become an additional
means that should be integrated with existing communication
channels. This poses a range of questions: Who is going to be
notified of what? Does the existing organizational structure need
to be mirrored in the wiki? How is such communication currently
achieved? Can email/phone/chatting be effectively used for this
purpose?.

Wiki wise, communication can be internal or external. Internal
communication is achieved within the wiki. At this respect,
two mechanisms are considered: discussion pages and templates.
Discussion pages (a.k.a. “talk” pages in MediaWiki) can be used
for discussion and communication with other users. In this way,
discussions are kept aside from the content of the associated page.
Templates have also been identified as effective means to deliver
fixed messages (e.g., warnings, to-do reminders, etc.). On the other
hand, external communication refers to the ability to notify wiki
changes outside the wiki itself (e.g., through RSSFeeds or email).

• Restriction Setting. Unlike open wikis, corporate wikis normally
limit access to its own staff. Permissions are counterintuitive in
a wiki setting where openness is a hallmark. Indeed, MediaWiki
natively supports a basic mechanism where the scope is the whole
wiki: you can either edit the whole set of wiki pages or not. By
default, wiki pages can be freely operated. However, permissions
are more stringent in a company setting, and finer-grained scopes
need to be introduced. Indeed, a study on the use of wikis in the
enterprise reports that power relationships and competition between
stakeholders created a need to read-only access [DS08]. For the time
being, two permissions are considered: read and edit. Additional

58

Chapter 3. Wiki Initialization: Aligning Wikis with Organizations

permissions will be added in future releases if feedback so advises2.

• Organigram Setting. The notion of role captures the distinct
functions people (e.g., employees) can play within the organization,
and which can also impact wiki edition and management.

• Presentation Setting. Companies care for their image on the Web
(both in the intranet or the extranet). Wikis resort to skins3 for
rendering. These skins are platform specific. However, we do
not expect our target audience to know about skins. We should
strive to capture presentation concerns in abstract terms, better said,
through domain criteria that could later be used by the DSL engine
to determine the most appropriate skin. Specifically, we consider
wikiSize and wikiEditFreq. Based on the expected size and edit
frequency of the wiki, heuristics can make an educated guess about
the wiki skin. In this way, the DSL engine frees stakeholders
from being knowledgeable about presentation issues, offering good-
enough outputs. Notice that the wiki administrator can later change
this automatically-generated skin. Additionally, the logo and sidebar

features are introduced for customizing both the headers and the
index panes of the wiki.

Based on the analysis made to the “Wiki Scaffolding” domain, we
introduce the Wiki Scaffolding Language (WSL) as the new DSL.

3.4 WSL Design

In a DSL context, a feature diagram serves to state the commonalities and
variabilities of the domain at hand, so that commonalities are built-in into
the DSL engine whereas variabilities are supported as parameters to be set

2MediaWiki permissions include read, edit, createpage, createtalk, upload, delete,
protect (i.e., allows locking a page to prevent edits and moves), etc

3A skin is “a preset package containing graphical appearance details”, used to
customise the look and feel of wiki pages.

59

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Figure 3.2: WSL metamodel (abstract syntax): a Scaffolding provides
basic infrastructure as for the content, organigram, access restrictions or
presentation of the wiki.

by the DSL user [MHS05]. These parameters to-be-set-by-the-user are so
provided as a DSL expression. This expression follows a concrete syntax
which in turn, is a realization of the DSL’s abstract syntax. The latter
takes the form of a metamodel where the features captured during the DSL
analysis are enriched to be fully operative.

3.4.1 WSL Abstract Syntax

The abstract syntax describes the concepts of the language, the
relationships among them, and the structuring rules that constrain the
model elements and their combinations in order to respect the domain
rules. This is expressed as the DSL metamodel (see Figure 3.2). The
constructs of the DSL are obtained from the feature diagram. A Scaffolding

(meta)model includes four main model (meta)classes, namely:

• The Content class, which represents a graph described along Items

and Links. Items capture the different kinds of data existing in the
organization that need to be also available at wiki inception. As

60

Chapter 3. Wiki Initialization: Aligning Wikis with Organizations

identified in Section 3.3, this content includes glossary terms to be
included as categories (GLOSSARY itemType), content to be readily
available as a wiki article (CONTENT itemType), guides for content
structure (TEMPLATE itemType), or events to capture scheduling
milestones (EVENT itemType). Next, Links relate these Items

together. Links are also typed based on the type of the related items:
a general item-to-item association (RELATEDWITH linkType), to
associate a category to an item (BELONGSTO linkType), to associate
a template to an item (TEMPLATEDBY linkType), or to associate
an event to an item (SCHEDULEDFOR linkType). Items also hold
three boolean attributes: discussion (to indicate whether this item is
subject to discussion), rssFeed (to specify the availability of a feed
subscription for this item) and indexPaneEntry (to capture that the
item is to be indexed in the sidebar). Finallly, text keeps the textual
content of its item.

• The Organigram class, which captures a basic arrangement of
People (i.e., employees) in terms of Roles.

• The Restriction class, which binds together three elements: a
permission subject (i.e., an Item), a permission grantee (i.e., a Role)
and a denial (i.e., READ and EDIT denialType).

• The Presentation class, which holds properties to guide the
rendering of the wiki (i.e., wikiSize, wikiEditFreq). In addition,
three common index schemas are preset, which might appear as
wiki panes if so decided: toolboxPane (common index entries in
the wiki: “what links here”, “Upload file”, “printable version”,
etc.), navigationPane (common index entries in the wiki: “recent

changes”, “help”, “main page”, etc.) and searchPane (a search box
to locate articles based on content). It is also possible for the designer
to define an ad-hoc index pane, i.e., its entries are defined through
the indexPaneEntry attribute: true causes an entry in the wiki index

61

Improving Creation, Maintenance and Contribution in Wikis with DSLs

pane for that item.

3.4.2 WSL Concrete Syntax

The concrete syntax comprises a mapping between the metamodel
concepts (i.e., the abstract syntax) and their textual or visual representation.
While the abstract syntax addresses expressiveness, the concrete syntax
cares for usability as for the target audience. Our target audience is
ordinary users. On these grounds, we select mind maps as the concrete
syntax for WSL. That is, a scaffolding is to be captured as a mind map.
The reasons are twofold. First, mind maps offer a way to display different
concerns radiantly (see Figure 3.3). The limited coupling between the
different scaffolding features suits this radial distribution. Second, mind
maps are catching on for decision making within organizations. Indeed,
mind maps are reckoned to be a valuable, visual approach for people to
collaborate and share ideas [BG10]. Therefore, we expect organizations to
be used to mind mapping, hence, reducing the learning cost of WSL.

However, there exists a plethora of graphical representation and tools
for mind mapping. Rather than developing our own visual representation,
we decide to capitalize on an existing editor: FreeMind [Fre]. We
stick to FreeMind on the following grounds: (i) popularity (over 6,000
daily downloads); (ii) soundness (over 8 years in the market); (iii)
interactiveness (e.g., easiness to play around with the map, where nodes
and their descendants can be easily moved and edited, branches can
be collapsed, etc.); (iv) open source (access to the source code); (v)
extensibility (through plugins); (vi) export facilities (maps can be turned
into applets, html code, flash code or image formats, which can next be
embedded as part of the wiki content); and finally, (vi) scripting (Groovy

scripts can be attached to mind map nodes4). Before delving into how
WSL constructs are mapped into FreeMind elements, the next subsection

4http://freemind.sourceforge.net/wiki/index.php/FreeMind_
0.9.0:_The_New_Features (accessed December 2012).

62

http://freemind.sourceforge.net/wiki/index.php/FreeMind_0.9.0:_The_New_Features
http://freemind.sourceforge.net/wiki/index.php/FreeMind_0.9.0:_The_New_Features

Chapter 3. Wiki Initialization: Aligning Wikis with Organizations

Figure 3.3: A sample Scaffolding for wiki-based software project
management (some errors are made on purpose for future debugging).

introduces an example.

WSL to Support Software Projects

Wikis have been proposed for software documentation and planning. The
distribution of stakeholders, the need for collaboration and tracking, and
the iterative manners that characterize software projects make wikis an
attractive platform [Lou06]. Figure 3.3 provides an example for the
“Purchase” project.

FreeMind depicts ideas and their relationships as nodes and edges
that follow a radial distribution. In our example, the Organigram branch
captures the existing roles (e.g., Customer, Database group) as well as
the employees (e.g., Jorge, Jesse) assigned to these roles. The Restriction

branch lists limitations in terms of wiki operations. The Event branch
captures two milestones attached to Requirement analysis and Software

63

Improving Creation, Maintenance and Contribution in Wikis with DSLs

desiNG. Next, the company already has some guidelines to capture use
cases and document deliverables. Such practices should also be adhered
to when in the wiki. The Template branch refers to two such guidelines
through the UseCaseTemplate node and the Deliverable guidelines node.
The Presentation branch will impact on the rendering of the wiki based
on the expected wikiSize and wikiEditingFreq. A “traffic light” icon is
used to indicate the three possible values of these properties: large (red
light), medium (yellow light) and small (green light). As for the
sidebar, this node includes a navigation pane (denoted by the “list” icon
) and a search pane (denoted by the “magnifier” icon). The sidebar is
finally completed with an index pane (denoted by the “look here” icon
on categories Use Cases, Test, etc.). Regarding to restrictions, “priority”

icon sets a restriction whereby Coders (i.e., the role) are restricted from
read (i.e., the denial type) the article Customer class diagram (i.e., the
item).

As for the corporate glossary, common terms already in use include
Use Cases, Functional Test, Compatibility Test, etc. These terms find their
way as wiki categories (i.e., fork nodes). Hierarchical relationships among
categories are captured by describing a category as a child of the parent
category (e.g., Test parent of Functional Test). Wiki articles are denoted
as bubble nodes (e.g., Requirements analysis stands for an article which is
categorized as Deliverables).

It can look odd to introduce articles at wiki inception since wiki’s
raison d’etre is precisely collaborative editing. Indeed, we do not expect
too many articles to be introduced at scaffolding time. However, the need
to come up with some articles might be known from the very beginning.
The scaffolding permits so by introducing a node whose title becomes the
title of the wiki article. For instance, the node Software design yields a
wiki article with the namesake title. Even more, some relationships might
be known at the outset. For instance, trace requirements made advisable to
keep a hyperlink between the Purchase entry test and the Purchase entry

UC. This is depicted as an arrow link between the node counterparts.

64

Chapter 3. Wiki Initialization: Aligning Wikis with Organizations

Based on preliminary user feedback, we also consider article content
to be known at scaffolding time. This is realized as a child of the given
article (together with the “info” icon). Figure 3.3 illustrates both options.
The content of Purchase entry test is explicitly provided as the text of its
child node. By contrast, the content of Purchase rejection test is already
available at the company as a MS Word document. FreeMind permits to
introduce hyperlinks as node content (denoted through a small red arrow).
This facility is used to our advantage to link Purchase rejection test to
the external document holding its content. Likewise, corporate guidelines
can find their way as wiki templates. So far, WSL only supports MS
Word documents (exported as XML). At deployment time (i.e., when the
WSL expression, i.e., the map is enacted), these external documents are
turned into either, article content or wiki templates. The rest of this section
provides a detailed account of WSL expressivity.

WSL-FreeMind Mapping

WSL is a visual language for “Wiki Scaffolding” on top of FreeMind.
This implies: (i) setting a mapping between the WSL metamodel (see
Figure 3.2) and the FreeMind metamodel (see Figure 3.4), and (ii) a set of
constraints that restricts FreeMind maps to be compliant WSL expressions.

First, we introduce the FreeMind metamodel. FreeMind uses a XML
schema to denote what is a valid map. Figure 3.4 depicts the FreeMind
metamodel obtained from this XML schema. A Map is a compound of
Nodes (there is a root node and its descendants). Nodes have a Text that
represents its title and might hold a link to an external document (local
or remote) as well as a set of properties mainly referring to rendering
concerns. For instance, the Style attribute can be FORK or BUBBLE and
determines the look of the node as a tagged line or a bubble, respectively.
Next, nodes are basically arranged in a tree-like way. Tree structures
are constructed using Edges. An edge is a graphical connector that
relates a node with its immediate descendants. In addition, Arrowlinks are

65

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Figure 3.4: Metamodel for mind map drawing as set by FreeMind.
Nodes are connected through either edges (a node and its descendants)
or arrowlinks (two nodes no matter their position in the map).

also connectors but in this case, the connection is between two arbitrary
nodes (this enables mind maps to support graph-like structures). Finally,
Icons and Fonts can be associated with nodes in an attempt to reflect the
underlying semantics of the node (e.g., a user identifies in red colour
important nodes). Of course, this semantics resides in the users’ head.
The remaining elements (e.g., Richcontent, Hook, etc.) are not reflected in
WSL.

66

Chapter 3. Wiki Initialization: Aligning Wikis with Organizations

Table 3.1: WikiScaffolding-to-FreeMind-to-MediaWiki mapping.
WSL FREEMIND MEDIAWIKI

Scaffolding “root” node main page5

Organigram Organigram bubble node n.a.
Role child of Organigram node wiki group

People grandson of wiki user &
Organigram node user page

Presentation Presentation bubble node wiki skin6

logo logo node wiki logo
wikiSize wikiSize node wiki skin

wikiEditFreq wikiEditFreq node wiki skin

with “traffic light” icons

navigationPane “list” icon navigation in sidebar

searchPane “magnifier” icon search in sidebar

toolboxPane “refine” icon toolbox in sidebar

indexPane entry “look here” icon at Item element in the navigation bar
Restriction Restriction bubble node and blacklisted pages

“priority” icons .. for groups7

denial child of “Restriction” node wiki permission.
Item
title node text page title

category Item fork node category page
article Item bubble node article page

template Item child of Template node template page
event Item child of Event node calendar extension8

discussion “stop-sign” icon talk page for that page

RSSfeed “flag” icons RSS generator for that page9

text child with “info” icon page content

or linked files
Link

relatedWith Link arrowLink connector inter-page hyperlink [[page]]
[[:Category:parentCat]]

belongsTo Link edge connector page-category hyperlink
[[Category:parentCat]]

templatedBy Link arrowLink connector template-page hyperlink
{{template}}

scheduledFor Link edge connector event-to-page link
in the calendar widget

5CategoryTree extension www.mediawiki.org/wiki/Extension:
CategoryTree (accessed December 2012).

6MediaWiki skins include monobook (default), vector (e.g., used by Wikipedia), etc.
WSL completes the offer with cavendish, rilpoint, guMax, guMaxDD and guMaxv.

7Blacklist extension www.mediawiki.org/wiki/Extension:Blacklist
(accessed December 2012).

8Barrylb extension www.mediawiki.org/wiki/Extension:
Calendar{_}(Barrylb) (accessed December 2012).

9WikiArticleFeeds extension www.mediawiki.org/wiki/Extension:
WikiArticleFeeds (accessed December 2012).

67

www.mediawiki.org/wiki/Extension:CategoryTree
www.mediawiki.org/wiki/Extension:CategoryTree
www.mediawiki.org/wiki/Extension:Blacklist
www.mediawiki.org/wiki/Extension:Calendar{_}(Barrylb)
www.mediawiki.org/wiki/Extension:Calendar{_}(Barrylb)
www.mediawiki.org/wiki/Extension:WikiArticleFeeds
www.mediawiki.org/wiki/Extension:WikiArticleFeeds

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Once the elements of a FreeMind map are introduced, we proceed to
indicate how WSL metamodel elements are going to be depicted using
these FreeMind elements. FreeMind extensibility would have allowed us
to introduce our own symbols and icons. However, we strive to stick
with FreeMind notation (including icons) to minimize the gap to what
FreeMind users are accustomed to. Table 3.1 (first two columns) indicates
this mapping:

• Scaffolding class. The “root” node is the FreeMind counterpart of
this class.

• Organigram class. A bubble node with title Organigram denotes the
origin of the organigram hierarchy. Roles are represented as nodes
having Organigram as parent. Likewise, people (e.g., employees)
are interpreted as nodes having Organigram as grandparent.

• Presentation class. A bubble node with title Presentation denotes
this class. Boolean properties are captured as icons on Presentation

(i.e., navigationPane, searchPane and toolboxPane). Value-based
attributes are represented as children nodes: Logo (captured as a link
to an image file), wikiSize and wikiEditFreq. The last two attributes
are decorated with traffic-light icons to account for their values.

• Restriction class. A bubble node with title Restriction denotes this
class. A WSL restriction is a triple: subject (i.e., an Item node),
grantee (a Role node), and a denial (i.e., READ or EDIT). We
resort to “priority” icons to denote those elements that compose a
restriction unit. That is, mind map nodes decorated with the same
“priority” icon belong to the same restriction. Due to the availability
of icons in FreeMind10, permissions are limited to ten (“priority”

icon ..).

10FreeMind provides a fixed set of icons. In the last version, users can introduce their
own icons, though it is not recommended for interoperability reasons.

68

Chapter 3. Wiki Initialization: Aligning Wikis with Organizations

• Content class. There is not a FreeMind counterpart for the Content

class as such. Rather all nodes in the mind map except for
Organigram, Presentation, Restriction, Event and Template (and
their descendants) stand for Content Items. The node title behaves
as an identifier; so that two FreeMind nodes placed differently but
with the same title, stand for the same Item. This allows the Content

graph to be flattened as a FreeMind tree.

• Item class. Items are typed as CATEGORY, ARTICLE, TEMPLATE

and EVENT. Category Items are denoted as fork nodes (i.e., nodes
with FORK style). Article Items are captured as bubble nodes. Next,
Template Items are children of the Template node. These nodes
can either hold the page text content (i.e., text attribute) themselves
as a child with the “info” icon or point to external documents
from where the content is obtained at compile time (only txt and
MS Word as XML exported files in the current version). Finally,
Event Items are children of the Event node. As for the boolean
properties, discussion, rssFeed and indexPaneEntry, the affected
Items (regardless of their type) are decorated with the “stop sign”
icon , a “flag” icon and “look here” icon , respectively.

• Link class. Links are classified as RELATEDWITH, BELONGSTO,
TEMPLATEDBY and SCHEDULEDFOR. FreeMind offers two
kinds of connectors: Edges, which are the default arcs connecting
a node with its child, and ArrowLinks, which are arcs connecting
two nodes anywhere in the map. Edges are interpreted as belongsTo

links when they connect an Item to a category Item (e.g., Figure
3.3, arc from Database design to Deliverables) and as scheduledFor

when they connect an Item to an event Item (e.g., Figure 3.3, edge
from Requirement analysis to 01/19/2011). As for ArrowLinks, they
sustain (i) RelatedWith links when they relate an Item to another
Item (e.g., Figure 3.3, arc from Software design to Database design)
and (ii) TemplatedBy links when the ingoing node stands for a

69

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Figure 3.5: WSL architecture: FreeMind as an interface of MediaWiki.

template Item (e.g., Figure 3.3, arc from Purchase entry UC to
UseCaseTemplate).

Constraints

A WSL expression is a compliant FreeMind mind map. However, the
opposite does not hold. Some mind maps might not deliver a compliant
“Wiki Scaffolding”, where compliance is determined by WSL’s abstract
syntax (Figure 3.2). Therefore, WSL maps are a subset of the possible
maps that can be drawn in FreeMind. Specifically, FreeMind mind maps
are internally represented as XML files along an XML schema. On top of
it, WSL imposes an additional set of constraints that ensures that maps
account for compliant scaffoldings (i.e., conform to the WSL abstract
syntax). For instance, an organigram node should at least have one role

node. If this is not the case, despite being a perfectly valid mind map,
the system raises an error, and the map can not be “exported” as a wiki
installation (more examples of errors in Section 3.6.2).

70

Chapter 3. Wiki Initialization: Aligning Wikis with Organizations

3.5 WSL Implementation

The WSL engine is implemented as a FreeMind plugin. Figure 3.5
outlines the architecture. As previously mentioned, wikis are supported
by wiki engines (e.g., MediaWiki). Although files are also an option (e.g.,
DokuWiki), wiki engines tend to store the wiki content in a database. A
“Wiki Scaffolding” is the initialization of a wiki project. Therefore, a
“Wiki Scaffolding” initializes a database. In other words, the enactment
of a WSL expression causes a set of tuples to populate the MediaWiki
database. This process goes as follows (see Figure 3.5):

1. The mind map (i.e., a .mm file) is turned into a WSL model (i.e.,
a .xmi file along the WSL metamodel). Since FreeMind maps are
XML files, this transformation is realized as a XSLT transformation,
which is natively supported by FreeMind.

2. This WSL model is next turned into a SQL script, through a
MOFScript11 model-to-text transformation.

3. This SQL script is run against the MediaWiki DBMS12 (i.e.,
MySQL). In addition, realizing the scaffolding might require specific
MediaWiki extensions. Specifically, Blacklist, which restricts access
to specified pages in a black list; Calendar, for event rendering in a
calendar; CategoryTree, which gives a view of the wiki structure as a
tree; EmailPage, to send wiki pages by email; and WikiArticleFeeds,
for turning wiki changes into RSS and Atom feeds.

As any other plugin, this architecture raises evolution and scalability
concerns:

• Evolution. The WSL engine might be affected by (i) changes
in MediaWiki (or its extensions), (ii) changes in the underlying

11http://eclipse.org/gmt/mofscript/ (accessed December 2012).
12All the connection parameters (database name, db user login, db password, db host

name) are obtained from the MediaWiki configuration file LocalSettings.php, which is
provided by the user in the “WSL Configuration...” option.

71

http://eclipse.org/gmt/mofscript/

Improving Creation, Maintenance and Contribution in Wikis with DSLs

database schema (this impacts the MOFScript transformation), and
(iii), changes in the FreeMind metamodel (this impacts the XSLT

transformation). This is certainly true. But, how real is this threat?
Both FreeMind and MediaWiki are stable platforms backed by
thousands of installations. In addition, wikis can be upgraded once
deployed. Remember that a WSL expression is used just to initialize
the wiki. Once the scaffolding is deployed, users can upgrade the
wiki to the newest version if required. Notice that the wiki can
next evolve in ways that contradict the scaffolding (e.g., new users
or templates can show up), but this does not erode the benefits that
scaffolding brings at the onset. All in all, wiki refactoring is certainly
an issue, and it is addressed in Chapter 4.

• Scalability. Although it is not the aim of scaffolding to offer
a complete wiki map but just a blueprint, large projects can
require large scaffoldings. This can lead to cluttered WSL maps.
Fortunately, FreeMind offers view-like mechanisms that permit
to filter map nodes based on content and relationships. Testing
stakeholders can filter those nodes containing the string “test”,
whereas template-minded stakeholders can restrict the view to those
nodes related with a template.

3.6 WSL Deployment

This section describes the common lifecycle of a WSL expression: edition,
verification and enactment, and provides some hints about the installation
of the WSL engine.

3.6.1 Edition

WSL expressions are edited as mind maps in FreeMind. To give users a
head start, the canvas can be initialized with a “skeleton” that draws the

72

Chapter 3. Wiki Initialization: Aligning Wikis with Organizations

Figure 3.6: WSL skeleton: a basic WSL template to get going.

main elements of a scaffolding map (see Figure 3.6). From then on, users
are free to handle the scaffolding as any other map. Notice however, that
not all maps are scaffolding maps. This moves us to the next subsection.

3.6.2 Verification

WSL maps are a subset of FreeMind maps, i.e., WSL metamodel imposes
additional constraints on top of the FreeMind metamodel. Such constraints
can be verified on user request or at enactment time.

Figure 3.7 provides a snapshot of the “Tools” menu now extended
to address WSL maps: “WSL Configuration...” permits to configure
parameters for the MediaWiki installation; “WSL Deployment” causes
the generation of the wiki instance from the WSL specification; “WSL

Skeleton” provides a FreeMind map with the basic WSL nodes (e.g.,
Organigram, Restriction, etc.) so that misspells are prevented; and finally,
“WSL Map Checking” triggers WSL map verification.

Figure 3.7 depicts the verification outcome for our sample problem (see
Figure 3.3). Messages can be either warnings or errors. For our sample,
two warnings are noted. One informs about the lack of the Presentation

node which, in this example, is due to a misspelling (e.g., Presentationnn).
The other warning notifies about a common mistake in wiki construction:
setting a relatedWith relationship between an article and a category. This

73

Improving Creation, Maintenance and Contribution in Wikis with DSLs

is an odd situation that could be mistaken with the belongsTo relationship,
and so is it indicated. As for errors, they prevent the wiki from being
generated. For our sample case, these errors include: a misspelling of
an event date (e.g., 01/19/2011); referring to a non-existent node (e.g.,
Software desiNG); partial definition of a restriction (i.e., either the denial,
the employee or the article is missing) (e.g., restriction); unsupported
document extension (e.g., extension “XMK” is not supported).

Figure 3.7: Verifying WSL expressions. Example for the map at Figure
3.3.

74

Chapter 3. Wiki Initialization: Aligning Wikis with Organizations

3.6.3 Enactment

By selecting the “WSL deployment” option of the Tool menu (see Figure
3.7), the current map is turned into a wiki installation in MediaWiki. This
means that around 1,000 LOC (mainly SQL statements) are automatically
generated for the current example.

Figure 3.8: Wiki home page generated
by WSL.

Figures 3.8 and 3.9 provide
three screenshots of the
generated pages: the former
with the main page (illustrating
the use of the CategoryTree

and Calendar extensions), the
Purchase rejection Test article
page (which is obtained from
a Word XML document) and
the latter with the Purchase

Rejection UC (which follows
the UseCaseTemplate also
externally obtained). For the
purpose of this dissertation, it
is enough to show the mapping
between FreeMind constructs
and the MediaWiki constructs.
The last two columns in Table
3.1 indicate this mapping.

3.6.4 Installation

For installation, proceed as follows: (i) download and install FreeMind13,
(ii) download and install the WSL engine14, and finally (iii) download

13http://freemind.sourceforge.net/wiki/index.php/Download
(accessed December 2012).

14http://www.onekin.org/wsl (accessed December 2012).

75

http://freemind.sourceforge.net/wiki/index.php/Download
http://www.onekin.org/wsl

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Figure 3.9: Template and article pages as generated by WSL for the
“Purchase Project” example.

a WSL sample14. WSL has been tested against MediaWiki 1.16.1 and
FreeMind 0.9.0. A detailed explanation and a video can be found at
www.onekin.org/wsl.

3.7 Discussion through Related Work

To the best of our knowledge, there are not other works that tackle the
task of aligning wikis with the corporate setting. Nevertheless, there is an
interesting point to debate: validation.

76

www.onekin.org/wsl

Chapter 3. Wiki Initialization: Aligning Wikis with Organizations

Validation is normally conducted through usability studies for the task
at hand. For our purposes, this task is the drawing of WSL maps using
FreeMind. However, there is nothing special about WSL maps when
compared with traditional mind maps. Therefore, WSL usability is that
of FreeMind15. However, this is not enough. Validation has also to do with
appropriateness, i.e., how the metaphor introduced by the tool matches the
mental model of users. This is more than just drawing maps. We want
to gain some insights about whether the notion of “Wiki Scaffolding” (no
matter how it is apprehended) can be valuable to wiki communities. For
this purpose, this section conducts a literature review about experiences
on using wikis. For each case study, we identify matters related with
“Wiki Scaffolding”, we depict the WSL maps for each case and finally,
we generate the MediaWiki installations16. Besides illustrating WSL, each
example highlights a scaffolding advantage (in italic). Table 3.2 outlines
how different scaffolding matters are realized in these scenarios.

3.7.1 Scaffolding to Promote User Engagement

Prompt user engagement has been identified as a main success factor for

wikis [Col09]. “Wiki Scaffolding” gives users an initial setting where
some artefacts (e.g., categories, templates, articles) are available from the
start. Figure 3.10 depicts a WSL map along the experiences reported in
[Col09]. Cole mentions six areas that are know from the start. They could
be represented as either articles (e.g., Paradigm shift) or categories (e.g.,
Development techniques). Regarding the comment of a student “there

aren’t any useful guidelines or tips that could be used”, content about wiki
usage (e.g., a “wikis for dummies” internal report, or URLs to appropriate
places) might be included as page text just by linking that file to the
WSL node. Furthermore, FAQ collected in the classroom might be made

15Interesting enough, FreeMind was listed in 2009 as a Community Choice Award
Finalist for its usability http://sourceforge.net/blog/cca09/ (accessed
December 2012).

16Available for inspection at www.onekin.org/wsl (accessed December 2012).

77

http://sourceforge.net/blog/cca09/
www.onekin.org/wsl

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Table 3.2: Setting matters that could impact wiki operation.
Scaffolding Academic Gaming Veterinary Software

wiki Community wiki Education wiki Project wiki
Glossary Keywords Game jargon Clinical Software

of the characters, taxonomies development
taught worlds, pathology, keywords: use
subject weapons drugs, viruses cases, tests

Content Syllabuses, Story line, Patents, terms of Technical
exams, FAQ tricks service, manuals,

sponsors README
Events Exam dates, Game releases — Planned

assignment meetings, project
deadlines milestones

Guidelines Exam patterns, Weapon Animal features, Use case,
assignment explanation, treatment steps, deliverable
guidelines character features student’s page template

RssFeed Doubts Patch release, — Requirement
announcements, updates

online news
Discussions FAQ, New features, Drugs in trial, Requirements,

tough themes support innovative test results
sponsors

Email Teamwork Bug teamwork Meeting
communication with customer

Restrictions Certain students Developers’ Discussions only Requirements
edit assignments, pages by qualified set only by

only lecturers people stakeholders
edit exams and analysts

Roles Student, Developer, Student, Stakeholder,
lecturer player, nurse, analyst,

tester, resellers veterinarian designer, coder
Presentation University Game — Organizational

logo “look&feel” image

readily available at the onset. In addition, communication mechanisms
(e.g., email, RSS feed and discussion pages) can be added to promote
all, student collaboration (e.g., do you know an answer to a common
doubt?), encourage participation (e.g., do you agree with the present year
assessment method?), and incite the work group (e.g., could we improve
our individual grade by working together?).

Based on previous teaching experiences, articles which are expected
to raise a debate, can be created with either a companion discussion page
(i.e., “stop-sign” icon) or a RSS feed (i.e., “flag” icon). This is the
case of the articles ISD methodologies and future directions. Event though,
the articles are empty, the scaffolding already provides the infrastructure
to initiate the discussion. In addition, some articles might need to follow

78

Chapter 3. Wiki Initialization: Aligning Wikis with Organizations

Figure 3.10: WSL scaffolding for a wiki to support student engagement.
Output available at www.onekin.org/wsl/IScourse. Username:
Lori, Password: 12345

some guidelines. An obvious example is that of exams. Templates can
be used to guide template-aware articles. The example shows an arrow
link from exam articles to the ExamT template. Access rights are defined
that prevents contributors, belonging to the Student role, from editing the
2010_Exam and 2009_Exam articles. Exam articles can be qualified by
an event. Finally, the expected size and editing frequency are both low as
denoted by the green “traffic lights” icons .

3.7.2 Scaffolding to Mirror Existing Organizational
Practices

Organizational wikis frequently need to mirror (and follow) existing

organizational practices. Introducing wikis in organizations is not easy
[GP10]. Stuff might lack the motivation to learn yet another new
technology. After all, other collaboration tools may already exist in
the organization including email, distribution lists, intranets, etc. “Wiki

79

www.onekin.org/wsl/IScourse

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Scaffolding” forces to ponder on those practices and resources which
might need to be migrated to/integrated into the wiki.

This situation is illustrated by wikis supporting software projects
[Lou06]. From a scaffolding perspective, characteristics of relevance
include (see Figure 3.3): (i) distinct stakeholders work together to
organize, track and publish project documentation; (ii) wikis act as
a version control system to keep track of changes; (iii) wikis are
useful as discussion means (e.g., Requirements analysis node); (iv) they
also provide rssFeeds to advise changes (e.g., Installation guide node),
email capabilities for notifications, project milestones as events (e.g., a
meeting for the Software design node), scheduling capabilities, etc. This
collaborative management of the project documentation does not occur in
a vacuum, but normally adheres to some “work of practice” existing in the
company. This includes a role organigram (e.g., Requirement Engineer,
Design Engineer, etc.) where contributions and permissions might depend
on the user role (e.g., Coders are not allowed to edit the Customer class

diagram as denoted by the “priority” icon), glossaries (e.g., terms
such as Use Case, Functional Test or Compatibility Test might be used
to categorize wiki content) or company guidelines for artefact production
(e.g., a common example is that of use cases).

3.7.3 Scaffolding as a Way to Engage Management

In order to provide value to the organization, wikis have to solve a

clearly specified problem and be aligned with the organizational strategy

[ST09]. Unfortunately, organizational wikis are in many cases a grass root
phenomenon whereby the wiki is introduced by an individual employee or
a small group within the organization without the support of management.
This bottom up approach frequently fails in having a strategic intent. More
to the point, a lack of strategy might result in no clear guidelines about what
to contribute, how to contribute and who should make the contribution.
An example is reported in [HDW10] where a wiki failure was due to

80

Chapter 3. Wiki Initialization: Aligning Wikis with Organizations

Figure 3.11: WSL scaffolding for a video-gaming wiki. Output available
at www.onekin.org/wsl/Eveonline. Username: Jake, Password:
12345

an ambiguity in the wiki’s aim: some users saw the wiki as a project
documentation repository whereas others used it for glossary entries. This
led to confusion and dissensions on the wiki’s intent.

From this perspective, “Wiki Scaffolding” forces to have a blueprint
before releasing the wiki for contribution. Thinking about how the wiki
will fit into the existing information ecosystem helps to devise the aim of
the wiki in advance. In addition, management support would be facilitated
if scaffolding is captured through intuitive means that ease self-edition,
sharing or discussion. This favours the use of mind maps.

This situation is illustrated by a video-game community (e.g., www.
eveonline.com) (see Figure 3.11). The wiki intent is to offer
a share space for both consumers and providers of video games to
communicate new insights about potential enhancements and new game
releases. Contributors are players (a.k.a. gamers) who discuss, share, and
edit content, guidelines, documentation, background and resources (i.e.,
glossary) about their favourite video games. Besides players, developers
and testers (i.e., roles) also participate to gain insights from the players

81

www.onekin.org/wsl/Eveonline
www.eveonline.com
www.eveonline.com

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Figure 3.12: WSL scaffolding for a wiki to support veterinary education.
Output available at www.onekin.org/wsl/Veterinary .
Username: Keny, Password: 12345

about how to improve their products17. There exist some restrictions to
both avoid misunderstandings and keep organizational policies untouched
(e.g., Players are not allowed to edit the Introduction node as denoted
by the “priority” icon). Direct communication (through discussions,
email notifications or RSS subscriptions) permits developers to know first-
hand the players’ opinion about new features, bugs, ideas, etc. Common
guidelines about how to explain game items are represented as templates
(e.g., a Battlecruiser is a kind of ship, so the namesake template is used).

3.7.4 Scaffolding as a Wiki Map

The “rules of practice” which govern a site (i.e., roles, access rights,

templates, etc.) should be easily accessible to newcomers. So far,
this information is scattered around the wiki, and frequently, hidden
in administrative pages. At best, a README page can provide some
textual description of these practices. From this perspective, a “Wiki

17http://wiki.eveonline.com (accessed December 2012).

82

www.onekin.org/wsl/Veterinary
http://wiki.eveonline.com

Chapter 3. Wiki Initialization: Aligning Wikis with Organizations

Scaffolding” can play the role of an initial practice sitemap. Traditional
site maps provide a kind of interactive table of contents, in which each
listed item links directly to its counterpart sections on the website. Some
wiki engines (e.g., MediaWiki) readily provided such map for categories.
One step in the same direction would be the use of “scaffolding maps”:
an HTML representation of a “Wiki Scaffolding” that permits to readily
access the wiki’s practices. Notice however, that this will require to
keep the scaffolding in sync with the wiki (i.e., new roles, terms, rights,
etc.), and to conceive “Wiki Scaffolding” as a supporting infrastructure for
collaborative content production whose usefulness goes far beyond wiki
initialization. This could be useful for communities where different roles
intertwine, and the implications of belonging to a certain role (e.g., in terms
of contribution obligations or access rights) should be clearly stated.

This scenario is illustrated by WikiVet18 [BQBB10]. Contributors
include veterinarians, veterinary students and nurses (i.e., roles), where
anonymous users might not be allowed to edit and, sometimes, even
read, pages (see Figure 3.12). This restriction increases the trustworthy
of the peer reviewed material since all the editors are knowledgeable
about veterinary. Main categories (i.e., WikiDrug, WikiBlood, WikiEpi

and WikiPath) pertain to the main index pane (i.e., “look here” icon).
WikiVet aims to create a veterinary curriculum, e.g., viruses, drugs (i.e.,
glossary), patents, sponsors (i.e., content). Some content has a common
structure (i.e., guidelines) e.g., both Antibiotics and Steroids follow the
DrugT template.

3.8 Conclusions

This chapter introduces the notion of “Wiki Scaffolding” as a means for
corporate strategies to permeate wiki construction. “Wiki Scaffolding” is
realized as mind map drawing to preserve wikis’ openness. The result

18http://en.wikivet.net/Veterinary_Education_Online (accessed
December 2012).

83

http://en.wikivet.net/Veterinary_Education_Online

Improving Creation, Maintenance and Contribution in Wikis with DSLs

is WSL, a visual DSL on top of FreeMind. By taping into FreeMind
as the conduit for the WSL concrete syntax, we expect non-technical
communities to benefit from “Wiki Scaffolding”. Potential benefits
include facilitating the alignment of the wiki with organizational practices,
promoting management engagement, enhancing the visibility of the wiki’s
practices, or promoting employee participation through direction setting.

WSL constructs are based on a literature survey about the use of wikis
in companies. However, the use of corporate wikis is at its inception. It
is likely that social conventions and incentives will emerge and evolve
to guide contributors, resolve disputes and help manage wikis. As these
issues find support in wiki engines, WSL constructs will need to be
extended. In addition, we have so far focused on the feasibility of the
approach and its interest in different scenarios. Additional evidences are
needed to claim that “Wiki Scaffolding” succeed on better aligning wikis
to corporate strategies as well as engaging users through direction setting.
We plan to deploy WSL in organizations that have already been exposed to
wikis to collect evidences about the advantages brought by the scaffolding.
In so doing, we hope to introduce scaffolding as another step in the wiki
ideal of removing “accidental complexity” from technology, and letting
ordinary users directly manage and construct their own knowledge.

The focus of this work relied on the challenges during wiki
initialization, now the next step is to face the challenges that happen in
an evolving wiki. The following chapter delves into the details.

Parts of this chapter have already been published:

• Oscar Díaz, Gorka Puente. “Wiki Scaffolding: Aligning Wikis
with the Corporate Strategy”. In Information Systems journal, 2012.
JCR, Impact factor 1.595.

• Oscar Díaz, Gorka Puente. “A DSL for Corporate Wiki
Initialization”. In 23rd International Conference on Advanced

Information Systems Engineering (CAiSE’11), London, UK, 2011.
Acceptance rate 13%. Best paper award.

84

Chapter 3. Wiki Initialization: Aligning Wikis with Organizations

• Oscar Díaz, Gorka Puente. “Wiki Scaffolding: Helping
Organizations to Set Up Wikis”. In 7th International Symposium

on Wikis and Open Collaboration (WikiSym’11), Mountain View,
California, USA, 2011. Acceptance rate 42%.

85

Chapter 4

Wiki Refactoring through Mind
Map Manipulation1

“Basically, I’m not interested in doing research and I never have been.

I’m interested in understanding, which is quite a different thing.”

– David Blackwell.

4.1 Overview

The organization of wikis tends to deteriorate as time goes by. Rearranging
categories, constructing articles and even, moving article sections (i.e.,
wiki refactoring) are cumbersome tasks, which discourage the layman.
But, it is the layman (knowledge workers and often not tech-savvy people)
who writes the articles, knows the wiki content, and detects refactoring
opportunities. The goal of this work is to empower this layman with
refactoring capabilities.

This chapter addresses the following research question: how to improve

the refactoring affordances of current wiki engines. Affordance is a

1Parts of this chapter have been previously presented [PD12, DPA11, PDA13].

87

Improving Creation, Maintenance and Contribution in Wikis with DSLs

perceived opportunity for action. For doing so, this work aims at
improving refactoring affordance of these laymen by (i) abstracting from
the current low-level wiki interactions into domain-specific constructs, and
(ii), providing tools tuned to both the refactoring endeavour and the target
audience (i.e., knowledge workers). To this end, this chapter introduces
WikiWhirl as a DSL (Sections 4.5 and 4.6). WikiWhirl models wikis as
mind maps, and refactoring operations as mind map manipulations. Some
refactoring scenarios (Section 4.2) ground the specifics of refactoring
when in a wiki setting: the wiki structure, the refactoring operations, the
invariants and the refactoring notices (Section 4.3). Next, a study shows
how these operations are supported in MediaWiki as to evidencing the
limitations of current wiki engines (Section 4.4). Results from a controlled
experiment suggest that WikiWhirl outperforms traditional wiki front-ends
in three main affordance enablers: global understandability, productivity
and automatic compliance of refactoring good practices (Section 4.8).
Finally, conclusions (Section 4.11) end the chapter.

WikiWhirl does not achieve anything that cannot be obtained by
directly interacting through the MediaWiki front-end. The difference stems
from refactoring affordance (who can understand/do the refactoring?),
productivity (how long does it take?), and consistency (i.e., whether
refactoring is conducted in the same way, following good practices, no
matter the user). WikiWhirl is available to download at www.onekin.
org/wikiwhirl and the source code at https://sourceforge.
net/projects/wikiwhirl.

4.2 Motivating Scenarios

WikiVet2 [BQBB10] is a wiki for the veterinary domain. Figure 4.1 shows
the traditional MediaWiki view of the article Coagulation Tests3. This view

2http://en.wikivet.net/Veterinary_Education_Online (accessed
December 2012).

3We have worked locally with a reproduction of this wiki.

88

www.onekin.org/wikiwhirl
www.onekin.org/wikiwhirl
https://sourceforge.net/projects/wikiwhirl
https://sourceforge.net/projects/wikiwhirl
http://en.wikivet.net/Veterinary_Education_Online

Chapter 4. Wiki Refactoring through Mind Map Manipulation

Figure 4.1: MediaWiki view of the article Coagulation Tests.

is article-centric. However, “Wiki Refactoring” is about the structure of the
wiki, i.e., how content is scattered among the hierarchy of categories and
articles. This structure is not apparent in Figure 4.1. You can dig into the
article content, looking for links to related articles, or move to the bottom
of the page to see how this article is categorized. But again, these insights
are specific to the article at hand. If a global view about WikiVet content
is sought, users are required to navigate (either by hyperlink or tabbing
navigation) through different pages for making the “deep structure” emerge
into their minds. This deep structure is the subject matter of refactoring.

WikiWhirl moves this structure at the forefront by providing an
alternative way of interacting with the wiki. Figure 4.2a depicts the deep
structure for WikiVet (partial view), automatically obtained from the wiki
database.

Broadly, pages are turned into nodes while hyperlinks become edges.

89

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Figure 4.2: (a) The WikiWhirl view: the WikiBlood category is depicted
as a tree where all descendents are visible, and (b) the MediaWiki view:
the WikiBlood category is rendered as a page where only immediate
descendents are visible. 90

Chapter 4. Wiki Refactoring through Mind Map Manipulation

The icon of each node denotes its role: the “info” icon stands for
article sections, the “edit” icon denotes articles, and the “folder” icon
represents categories. Clicking on any of the nodes moves the user to the
traditional wiki front-end for the page at hand (i.e., the rendering of Figure
4.1). On top of this structure, WikiWhirl introduces a set of refactoring
operations. Next, we introduce three scenarios to highlight the importance
of this alternative representation: wiki initialization, structure refactoring
and content refactoring. As we go along, we characterize the refactoring
endeavour.

4.2.1 Wiki Initialization

Wiki stakeholders should envision a starting point in order to promote
initial participation. The paralysis of facing an empty wiki and the lack
of explicit statements about the wiki’s purpose might prevent grassroot
initiatives from “getting off” the ground [LDP+11]. This suggests the
convenience of a “wiki scaffolding”, i.e., a preliminary category structure
that serves to categorize the wiki’s content at the onset [DP12] (Chapter 3).
Wiki users are able to start by brainstorming about this initial structure. For
the sample domain (i.e., veterinary), these preliminary categories might
include:

• a category WikiDrugs with subcategories Anaesthetic_Drugs and
Sedatives_and_Tranquilisers,

• a category WikiBlood with subcategories Anaemia, Cells,
Immunology and Pressure; the subcategory Immunology has
two subcategories Disorders and Flashcards,

• a category WikiEpi with a subcategory Education,

• a category WikiPath with subcategories General_Pathology and
Clinical_Pathology; General_Pathology has two subcategories
Degenerations and Toxicology; Clinical_Pathology has two
subcategories Haematology_Changes and Blood_Changes.

91

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Figure 4.2b shows the category WikiBlood of WikiVet using the MediaWiki
front-end while Figure 4.2a shows the WikiVet counterpart in WikiWhirl.
For an experienced user, creating these categories directly through
MediaWiki took 7 minutes and 30 seconds. The very same user using
WikiWhirl achieved the same result in 5 minutes and 2 seconds. As
these figures point out, the difference is not so much about time. After
all, there is almost a one-to-one mapping between the WikiWhirl “create
category” operation and its counterpart interaction in MediaWiki. For
wiki initialization, the real breakthrough comes from visual clarity, and
its impact on helping consensus.

The notion of consensus sits at the very core of the wiki movement.
Consensus is reached when all members of a team are willing to support a
decision, even though a particular decision may not reflect an individual’s
choice of action. Consensus benefits from a clear understanding of each
other’s opinions and potential points of friction. Refactoring decisions
are not an exception. The wiki content and structure are the result of a
consensus among the stakeholders that emerge as different perspectives are
considered, and the community becomes more acquaintance with the wiki
corpus. A clear representation of the problem space is then a main enabler
of consensus. Different studies report on the benefits of using mind maps
to structure matters during brainstorming [BG10]. Wikis can somehow
be regarded as accommodating online and asynchronous brainstorming
sessions in the sense that participants are also encouraged to contribute
with their own view and background.

By using mind maps, WikiWhirl permits stakeholders to discuss and
try different preliminary structures for their wiki. As noted in [McH12],

“if a wiki has too loose of a structure, users will not understand

or be motivated to contribute. On the other hand, if the

structure of categories is too rigid, users may find the wiki

does not meet their expectations for content collaboration.”

This first structure will start an organic growth, as the next scenario shows.

92

Chapter 4. Wiki Refactoring through Mind Map Manipulation

Figure 4.3: Structure refactoring: constructuing the corpus of the wiki.

4.2.2 Structure Refactoring

As time goes by, participants know the wiki’s topics, and diverse
perspectives begin to emerge. This growth pattern is characterized as
“organic” in the sense that it is auto-regulated by the community itself
[Cun06]. This results in an increase in the number and size of the articles.
Furthermore, the structure expands as new categories are introduced to
realize complementary, overlapping or divergent classification criteria for
article organization. Focusing on structure refactoring, issues about the
“conceptual consistency” and “syntactic consistency” might arise (a.k.a.
“harvesting wiki consensus” in [HSB07]). How to reach such consensus is
outside the scope of this work.

Back to the running example, the initial wiki structure has mutated to
the one in Figure 4.3, after conducting the following operations:

• Create

– a category Organisations with two sub-articles
International_Intergovernmental and National_Governmental,

– a category Anatomy_and_Physiology with two sub-articles
Alimentary_System and Superficial_Anatomies.

• Categorize

– the category Organisations with the category WikiEpi,

93

Improving Creation, Maintenance and Contribution in Wikis with DSLs

– the category Infectious_Agents with the category
Anatomy_and_Physiology.

• Uncategorize

– the article Paracetamol from the category WikiDrugs and
categorize it with the category Toxicology,

– the article Anaplasmosis from the category Degenerations and
categorize it with the category Anaemia.

• Rename

– the article Superficial_Anatomies to Superficial_Anatomy,

– the category WikiEpi to Epidemiology.

• Drop the category Infectious_Agents and all its descendants

– the articles Parasites and Viruses,

– the category Bacteria and its subcategory Mycoplasmas,

– the category Fungi and its subcategory Mycoses,

• Annotate the category Antibiotics as “catdiffuse” (denoted with the
yellow-flag icon). Annotations serve users to guide other fellows
on how to accomplish future extensions of the category at hand (see
next section).

For an expert user, these operations took 6 minutes and 4 seconds
if achieved directly through the MediaWiki front-end. This figure
dropped to 3 minutes and 1 second in case of using WikiWhirl. Even
though productivity gains are obtained, these figures focus on doing

refactoring but not on conceiving refactoring (i.e., understanding what
to do). Knowledge refactoring is, above all, a matter of apprehending
the subtleties of knowledge construction. From this perspective, mind

94

Chapter 4. Wiki Refactoring through Mind Map Manipulation

maps offer a more intuitive representation than the mere listing of
the wiki categories (see Figure 4.2b). Indeed, when comparing maps
versus hyperlinks (i.e., the traditional MediaWiki front-end), evidences
are reported about subjects who received the map had significantly less
feeling of disorientation and more perception of the content structure than
those in the hyperlink group [SK06]. These references ground the use of
mind maps as an appropriate representation not only for doing but also
understanding how to conduct “Wiki Refactoring”. But refactoring in
wikis is not only limited to categories and article links. Refactoring also
impacts on how content is arranged as sections within articles.

4.2.3 Content Refactoring

Content refactoring might be due to the tangling and scattering of topics
among distinct articles (rather than a one-to-one relationship between
topics and articles). This is operationalized as splits and merges upon
articles. In addition, articles’ names (a.k.a. topics or titles) can also
be subject to mutation as terminology agreements are reached. Finally,
additional cross-referencing links might need to be created. We illustrate
this scenario by conducting the following operations in our running wiki:

• Split

– the article Steroids to a new article Non_Steroids; move
the sections Mechanism_of_Action and Actions of the article
Steroids to the article Non_Steroids,

– the article General_Concepts to a new article
Specific_Concepts. Move the section Quantitative_data of the
article General_Concepts to the article Specific_Concepts.

• Merge

– the articles Postgraduate_Courses and Short_Courses to a new
article Courses,

95

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Figure 4.4: Content refactoring: rearranging content along the wiki .

– the categories Anaemia and Immunology to a new category
Bleeding_Disorders.

• Move

– the section Anatomy of the article Overview to the article
Monocytes,

– the section Pathological_changes_to_cells of the article
General_Pathology to the article Overview.

Figure 4.4 depicts the outcome. Time wise, previous operations took 14
minutes 13 seconds when conducted directly through the MediaWiki front-
end. This figure drops to 2 minutes 39 seconds when using WikiWhirl. As
expected, the more abstract the operations, the wider the time gaps. Splits
and merges involve a set of low-level interactions over the MediaWiki
front-end. What is a single drag-and-drop of a node in the mind map
involves the edition of different pages in MediaWiki. In addition, the
piecemeal fashion in which these operations are conducted in MediaWiki
raises two main concerns: affordance and consistency. The former has to
do with the number of artefacts, guidelines and interactions the user has
to be aware of to refactor, keeping in mind that complexity undermines
“openness” (i.e., who can conduct refactoring). On the other hand,
consistency refers to whether the question “how is refactoring conducted”

96

Chapter 4. Wiki Refactoring through Mind Map Manipulation

gets the same answer to matter the user. Next section attempts to provide
common understanding about “Wiki Refactoring”.

4.3 Understanding Wiki Refactoring

Refactoring acts upon a corpus. The nature of this corpus impacts how
refactoring is conducted. Hence, before introducing the refactoring process
and the operations, next section outlines the nature of the wiki corpus.

4.3.1 The Wiki Corpus

A corpus (a.k.a. body of knowledge) is “a collection of all the available
knowledge on a topic, or all the published material on a subject”. The
scope of this topic depends on the wiki at hand. It can range from all-
human-knowledge (e.g., Wikipedia) to data about the Genome project
[CL12] or management of software projects [ADM09].

Wikis support the development of this corpus, i.e., the lifecycle
of knowledge construction from embryonic ideas to well-structured
comprehensive documentation where distinct articles might be in different
stages of their lifecycle. Even though wikis can keep finalized articles,
their added-value rests on the other stages of the article lifecycle:
collaborative knowledge formation. This implies that the wiki’s structure
itself is “work in progress”. We can start with a stub structure (i.e., a
scaffold), which gradually evolves as the understanding of the domain
growths. Hence,

“the purpose of the wiki’s structure is not to build a taxonomy

of the world’s knowledge, but to help users to locate and make

the wiki’s content grow.”

Structure is realized as wiki categories, basically tags in the sense that the
reason of their use must be evident from the text of the categorized article4.

4The term ’tag’ in MediaWiki is used to denote markup tags for extensions www.
mediawiki.org/wiki/Manual:Tag_extensions (accessed December 2012).

97

www.mediawiki.org/wiki/Manual:Tag_extensions
www.mediawiki.org/wiki/Manual:Tag_extensions

Improving Creation, Maintenance and Contribution in Wikis with DSLs

As stated in Wikipedia,

“these tags create links at the bottom of the page that take you

to the list of all pages in that category, which makes it easy to

browse related articles5.”

This refers to the role of categories as browsable spaces in which the wiki’s
corpus can be partitioned and be dynamically re-arranged just by changing
the category. These browsable spaces can be disposed along membership
relationships so that if logical membership of category C1 implies logical
membership of category C2, then C1 should be made a subcategory of
C2 (or C2 is the parent category of C1). Such arrangement is referred
to as category hierarchies, and they constitute the cornerstone of “Wiki
Refactoring”.

“Even though category hierarchies can be regarded as

’embryonic taxonomies’, they lack any formal semantics. They

limit themselves to facilitate location of articles through tag

navigation. No inference power is built in.”

4.3.2 Refactoring Operations

Refactoring is a disciplined technique for restructuring an existing body of
code, altering its internal structure without changing its external behaviour
[Fow99]. This definition raises two questions: (i) how wikis can be
restructured, and (ii) what this “external behaviour” is i.e., the invariant
to be kept during “Wiki Refactoring”.

The Operations

There are three main reasons to include a refactoring operation6. First, the
operation is natively supported by most wiki engines. This includes:

5www.mediawiki.org/wiki/Help:Categories (accessed December
2012).

6When describing operations, we use “page” to refer to either an article or a category.

98

www.mediawiki.org/wiki/Help:Categories

Chapter 4. Wiki Refactoring through Mind Map Manipulation

• create i.e., the introduction of a new wiki page that plays the role of
either an article or a category,

• categorize i.e., characterizing the content of the page through a tag
(i.e., category),

• uncategorize i.e., removing a tag (i.e., category) from a page,

• article rename i.e., changing the article’s title, which is used to
singularized this article; it impacts the article’s URL,

• drop i.e., removing a page from the wiki.

Second, the operation as such is not supported by the wiki engine but is
documented as part of Wikipedia’s good practices:

• Category rename. Unlike articles, it is not possible to rename a
category in MediaWiki7. It is necessary to create a new category
and change the category tag manually on every page, and redirect
the old to the new category.

• Split. Split is a refactoring process documented by Wikipedia
whereby part of the content of a page is migrated to a new page.
The two main reasons for split are size and content relevance8. If
either the page becomes too large or its content seems to diverge
between different purposes, then it is considered a split. From an
authorship perspective, it is a requirement of Wikipedia licensing
that attribution is given to the original author(s), and deletion of that
content should be avoided.

• Merge. Merge is a refactoring process documented by Wikipedia
whereby the content of two pages is collapsed into a new

7www.mediawiki.org/wiki/Help:Categories (accessed December
2012).

8http://en.wikipedia.org/wiki/Wikipedia:Splitting (accessed
December 2012).

99

www.mediawiki.org/wiki/Help:Categories
http://en.wikipedia.org/wiki/Wikipedia:Splitting

Improving Creation, Maintenance and Contribution in Wikis with DSLs

one. Rationales include “the unnecessary duplication of content,
significant overlap with the topic of another article, and minimal
content that could be covered in or requires the context of a page
on a broader topic”9.

Third, the operation is introduced based on our own experience:

• Section move. At least during the inception, wikis are in constant
evolution. Articles are created, merged, split or deleted as the
community gains insights. During this process, we found that
articles might be a too coarse-grained unit of rearrangement but
rather, sections might better fit as the unit of exchange.

The Invariants

Refactoring can change the wiki’s internal structure for the sake of
navigability, accessibility or comprehension, but the content (and its
authorship) should be kept immutable. Seeking a database parallelism,
logical independence is a solid principle of database operation whereby
changes in the database schema should minimally disturb client
applications. This notion of logical independence rises from any shared

resource that evolves: let it be a database schema, a component or a
software library. Wikis are shared resources. The question is then what
can be affected by wikis’ evolution. While applications are impacted by
changes in the database schema, wikis impact end users in their double
role of readers and authors. Changing the wiki structure (as result of
a refactoring) should cause minimal interference on these activities (i.e.,
reading and authoring). Hence, the aforementioned refactoring invariant is
realized through two independence principles, namely:

• Readership independence: readers should be able to reach the same

content after or before the refactoring. This principle preserves

9http://en.wikipedia.org/wiki/Wikipedia:Merging (accessed
December 2012).

100

http://en.wikipedia.org/wiki/Wikipedia:Merging

Chapter 4. Wiki Refactoring through Mind Map Manipulation

the content but not where the content is placed. Refactoring can
rearrange the very same content along a different set of articles
and categories. Such rearrangement should be traceable so that
users can easily find the new location, and potentially, reverse
malicious refactorings10. In addition, since content might be
subject to bookmarking, readership independence also preserves
URL addresses upon changes on the articles’ title.

• Authorship independence: authors should keep their attribution no

matter where the content is finally placed. Acknowledging the
authorship has been reported as a main motivator of contributions
[ASR+10]. It is also one of the Wikipedia’s good practices. Wiki
refactoring must preserve authorship.

To support these principles, additional artefacts are introduced as part of
the wiki realization: Talk artefacts (a.k.a. discussion pages) and Revision

artefacts. The former hold discussions about the content of the associated
page without interfering with content editing (e.g., talk pages might be
used to publicize refactoring changes on the associated articles). On
the other side, Revision artefacts keep a trace of the most recent edits.
In this way, users can monitor and review the work of other users,
allowing mistake correction and vandalism fight. These pages can also
be used to trace refactoring changes so that the rest of the community is
informed about who, when and how conducts the refactoring. The use
of these artefacts to ensure both readership independence and authorship
independence is discussed in Section 4.5.

10From this perspective, “readership independence” sustains one of the wiki hallmarks:
observability. To counteract potential misbehaviour, the community should be able
to detect and reverse malicious editions. Likewise, readership independence ensures
refactoring changes to be traceable, and hence reversible.

101

Improving Creation, Maintenance and Contribution in Wikis with DSLs

4.3.3 The Process of Wiki Refactoring: Requirements

We advocate for “Wiki Refactoring” to follow two main wiki principles
(Chapter 2), namely: open and observable.

Open. It implies facilitating user participation. This tenet entails
refactoring to be conducted with minimal disturbance (i.e., reducing
“accidental complexity”) and in terms closer to the user. This calls for
the introduction of a DSL that help users to conduct refactoring in high-
level terms. Even better, such DSL should be graphical to reduce even
further the learnability cost while engaging a larger number of users in the
refactoring duty.

Observable. It requires wikis to track changes as well as providing
pervasive peer-review mechanisms. To counteract potential misbehaviour,
the community can detect and reverse malicious editions. Refactoring
should also be observable. The appropriateness of a refactoring action
(e.g., splitting an article) cannot be generally set by some formal
verification but validated by the community. The test for “Wiki
Refactoring” is whether the community backs the change. This introduces
a double communication flow between the refactoring person and the
community (observability) and vice versa, from the community to
the refactoring person (noticeability). The former implies to keep
track of refactoring changes as well as providing pervasive peer-review
mechanisms. To this end, a refactoring system should support notices, i.e.,
announcements about a certain refactoring event (e.g., split notices, merge

notices or move notices to inform the wiki community about the namesake
operations). This complements revision notices (a.k.a. edit summaries)
that are kept as part of the history of the artefacts to help others understand
the intention of the edit.

In this way, the community can detect and reverse malicious refactoring
actions. We include here “redirect notices” whereby the reader is
redirected to another page. This can handle alternative syntactic
representations of the same topic whereby, no matter the reference used,

102

Chapter 4. Wiki Refactoring through Mind Map Manipulation

they are all redirected to the same page. During refactoring, articles’
content can be moved to different places so the original article vanishes.
Redirection avoids dangling references to the removed article so that
existing references are dynamically redirected to the new location. Notices
are main enablers of readership and authorship independence.

Collaborative refactoring benefits from the community to inform about
future refactoring actions. Notices can also be used to spot refactoring
needs that should be eventually conducted by someone else. This approach
is extensively used for articles by introducing boilerplate messages for
various issues like copyright violation, neutrality disputes, etc., using a
simple shortcut command realized as a wiki template. Some examples
follow11:

• Catneeded notice. It suggests for the article to be categorized so that
it can be listed with similar pages.

• Catimprove notice. It spotlights the need for additional or more
specific categories.

• Catdiffuse notice. It indicates that any article added to this category
should eventually be moved to the appropriate subcategories
(diffuse) when sufficient information is available. If this subcategory
does not exist yet, either create the subcategory or leave the article
in the parent category for the time being.

Among these requirements, we regard ’openness’ as a pre-requisite for
the other. Spurring openness will bring observability as a trust enabler.
Openness implies lowering the barriers for layman participation. Among
the main enablers sits the perceived affordances of current wiki engines.

11The notices are mainly based on Wikipedia http://en.wikipedia.org/
wiki/Wikipedia:Template_messages (accessed December 2012).

103

http://en.wikipedia.org/wiki/Wikipedia:Template_messages
http://en.wikipedia.org/wiki/Wikipedia:Template_messages

Improving Creation, Maintenance and Contribution in Wikis with DSLs

4.4 Perceived Affordance for Refactoring

This section analyses refactoring affordances in current wiki engines.
Perceived affordance is a sensed opportunity for action [Nor02]. For
example, in the context of a website, any digital native perceives that an
underlined text indicates a hyperlink; and, consequently an opportunity to
follow (click), and reach information that relates to the hyperlinked word
or phrase.

Affordability is consubstantial to the wiki’s open principle. Indeed,
affordable edition is seen by many as the main breakthrough introduced by
wikis. Likewise, refactoring will be affordable or will not be. However,
affordance is not an absolute measure. Rather, affordances contextualize
refactoring within a given representative user (i.e., the user dimension),
framed by a certain socio-cultural environment (i.e., the social dimension)
and conducted through a given tool (i.e., the technical dimension) [Vat10,
MF12]. Specifically, this work takes knowledge workers as the wiki users,
corporations (rather than open Internet) as the environment that hosts
the wiki, and MediaWiki as the wiki engine to conduct the refactoring.
Even though the analysis focuses on this wiki engine, the outcomes are
generalizable to other wiki engines.

4.4.1 About the Tool: MediaWiki

As most wiki engines, MediaWiki front-end favours article centricity
rather than corpus centricity. That is, the MediaWiki front-end situates the
article at the centre of edition, navigation and location. Rationales might
be that MediaWiki was conceived for Wikipedia, where the wiki supports
an encyclopaedia-like way of reading, arranging and locating information.
Traditional encyclopaedias are mainly used for pinpointing a specific topic
(i.e., the biography of a given person, the description of a city), and then,
moving to entries that depart from this first article of interest. The wiki
twist comes from making the encyclopaedia articles openly editable, and

104

Chapter 4. Wiki Refactoring through Mind Map Manipulation

Table 4.1: Refactoring affordances for MediaWiki in terms of time
(#clicks) and cognitive load (#artefacts).

Refactoring Time load Cognitive load
operation # clicks Revision Talk Refactoring Redirect

notice notice notice

Create 3 "

Categorize 2 "

Uncategorize 2 "

Art. rename 2 " " "

Drop 2 "

Cat. rename 5 " " "

Split 6 " " "

Merge 9 " " " "

Section move 5 " " " "

offering the means for collaborative edition. This “context of use” grounds
the current MediaWiki front-end. However, this work moves the focus to
a different “context of use” i.e., refactoring in corporate wikis.

We quantify refactoring affordances for MediaWiki in terms of (i)
the number of interactions needed to conduct a refactoring operation,
and (ii) the number of different artefacts that need to be manipulated
to achieve a refactoring goal. Table 4.1 shows the outcome. As an
example, Figure 4.5 outlines the different interactions and notices the
user has to go through to fulfil a merge operation. The user (1) starts
by creating a new page (e.g., Courses) where to move the content of
the merging articles (e.g., Short_Courses and Postgraduate_Courses). To
ensure readership independence, (2) a redirect notice should be introduced
in the merging articles. To ensure authorship independence, (3) a merge

notice is introduced in the merged article to indicate its origin. To facilitate
observability, (4) a revision notice (a.k.a. edit summary) is introduced
and the corresponding (5) talk pages are accordingly updated for the
community to be aware of the change.

The bottom line is that the current MediaWiki front-end makes
refactoring convoluted. Users should not only invest time but also
need to be aware of the process and notices involved. This jeopardizes
affordability, and hence, openness, raising the barrier of wiki literacy.

105

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Figure 4.5: Article merge through MediaWiki.

This issue is exacerbated in environments where the wiki structure either
evolves frequently or the cost of disorganization is high. This can be the
case of corporate wikis.

4.4.2 About the Environment: Organizations

Corporate wikis are catching on as lightweight knowledge management
tools (for a survey of wikis in enterprise refer to [LDP+12]). Indeed,
the Intranet 2.0 Global Survey reports that the 61% of the respondent
companies (1,401 participants) were somehow using wikis [War11].
Corporate wikis tend to be smaller than open wikis. An estimate is for
corporate wikis to contain an average of 1,500 articles [SB09]. This
reduction in size however, hides that corporate users tend to be interested
in a larger number of wiki pages than e.g., users of Wikipedia. Apart from

106

Chapter 4. Wiki Refactoring through Mind Map Manipulation

cosmetic editing (e.g., typo corrections), wikipedians tend to contribute
in few more than one article12. By contrast, the interest of corporate
employees frequently expands along different wiki pages. This makes
both clear structure and easy navigation more prominent in corporate wikis
than in open wikis. Specifically, Lykourentzou et. al [LDP+12] state that
“structure seems to also play an important role to the success or failure

of a corporate wiki implementation. That is, poor structural support often

seems to result to laborious information insertion and retrieval, navigation

difficulties and information duplication”. In a working setting, these
pitfalls impact the productivity of knowledge workers.

4.4.3 About the User: Knowledge Workers

Open wikis tend to be grounded in altruistic collaboration. By contrast,
contribution in corporate wikis is not always a selfless activity at spare
time but part of the duties at working time. This also implies that users’
time is more valuable for the organization. In this regard, the tool’s

user-friendliness might improve the efficiency and efficacy of knowledge

workers. Indeed, this feature is identified as a major technological enabler
of the success of a corporate wiki [LDP+12]. In addition, “attribution

of authorship seems to be the affordance that is most appropriate

modification for corporate settings, and users believe that introducing an

attribution mechanism will increase their involvement” [YA12].

Figure 4.6 outlines the previous discussion along the three-dimensional
affordance space. Technically, wiki engines incorporate facilities to
categorize or rename as well as artefacts for hosting discussions and tracing
within the wiki (e.g., talk pages). However, some refactorings expand
along different interactions throughout distinct wiki pages. As a result,
users conducting refactoring are expected to have additional technical
skills besides article editing. Good synthesis skills as well as a good

12http://www.aaronsw.com/weblog/whowriteswikipedia (accessed
December 2012).

107

http://www.aaronsw.com/weblog/whowriteswikipedia

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Figure 4.6: Refactoring affordances.

knowledge about the wiki corpus are also recommended. Finally, these
interactions are framed by a set of regulations or good practices about
preserving authorship and readership. The company’s organigrams or
confidentiality regulations might impose additional restrictions about who
can refactor and how refactoring can be conducted. The wiki engine does
not preclude some “socially” incorrect refactoring (e.g., not preserving
authorship). Social surveillance might then be needed to ensure socially
acceptable refactoring.

We contend that the current MediaWiki front-end requires users to be
literate about the intricacies of refactoring while leaving to the community
the detection of socially-disturbing refactoring practices. Leveraging
MediaWiki’s refactoring affordances may be conceived as moving some
duties from either the user-affordance dimension or the social-affordance
dimension to the technical dimension (see Figure 4.6). We focus on the
user-affordance dimension by moving refactoring expertise from the user
to the refactoring tool. Next, we introduce a DSL for “Wiki Refactoring”:
WikiWhirl. The construction of this DSL entails systematizing a set of
refactoring operations (i.e., the abstract syntax) (Section 4.5), nailing these
operations down into a concrete syntax (Section 4.6), and providing tool

108

Chapter 4. Wiki Refactoring through Mind Map Manipulation

Figure 4.7: WikiWhirl metamodel (abstract syntax).

support (Section 4.7) [MHS05]. Only the final step depends on the wiki
engine.

4.5 WikiWhirl: The Abstract Syntax

As previously described, the abstract syntax describes the concepts of the
language, the relationships among them, and the structuring rules that
constrain the model elements and their combinations in order to respect
the domain rules [Val10]. This is expressed as the DSL metamodel. We
introduce the WikiWhirl DSL as the means to specify a refactoring session
(see Figure 4.7).

A WikiWhirl session is captured through a Wiki model plus as a
sequence of refactoring Operations. The Wiki model conceives the
wiki as a composition of WikiResources, which are characterised by
refactoring_notices. Refactoring_notices are boilerplate messages that
spot some refactoring matter for the resource at hand. Subsection 4.3.3

109

Improving Creation, Maintenance and Contribution in Wikis with DSLs

introduced six such notices.

Resources are classified as RefactoringResources (i.e., the subject
matter of the refactoring operations) and SupportingResources (i.e.,
those needed to support the authorship and readership independence
principles). Refactoring resources include Categories, Articles and
Sections, where Categories and Articles are composed by Sections13.
Notice that wiki engines do not support sections as independent artefacts
but as embedded inside the wikitext of pages. However, this approach
promotes sections as full-fledged classes as representatives of the article
structure. As for the SupportingResources, they include Talks and
Revisions. On the other hand, a refactoring operation (Operation) acts
upon existing RefactoringResources (i.e., ReferenceArg) or creates a new
RefactoringResource (i.e., ResourceArg). RefactoringResources have a
title, which is a user-given string that singularized the resource. Operation
classes are those introduced in Subsection 4.3.2.

This abstract syntax permits to describe refactoring sessions. Broadly,
a textual representation of one such session would be:

Split(Steroids, ’Steroids_split’);

Rename(Steroids_split, ’Non-Steroids’);

Move(Mechanism_Of_Action, Steroids, Non_Steroids);

where Steroids and Non_Steroids are Article resources, and
Mechanism_Of_Action is a SectionResource. However, the important
point is not so much about the syntax but how these primitives behave.
Using design-by-contract, the Table 4.2 characterizes these operations
in terms of pre-conditions and post-conditions. The invariant is to keep
the Section set inalterable: sections can be re-arranged but never deleted.
Notice however that this invariant only covers parts of the independence
principles for “Wiki Refactoring” as set in subsection 4.3.2, namely:

13Only first level sections are considered (denoted as ’== sectionName ==’ in
WikiText).

110

Chapter 4. Wiki Refactoring through Mind Map Manipulation

Table 4.2: Refactoring operations and their pre/post conditions.
Operation Pre-condition Post-condition

create(Wiki.wikiResources.
newTitle, newTitle 6= null; contains(newTitle) = true

aResource) Wiki.wikiResources. aResource.title=newTitle
contains(newTitle) = false

categorize(aResource ∈ RefactoringCompound; aResource.parentCategories.
aResource, aResource 6= aCategory; contains(aCategory) = true
aCategory) aResource, aCategory 6= null;

aResource.parentCategories.
contains(aCategory) = false

uncategorize(aResource ∈ RefactoringCompound; aResource.parentCategories.
aResource, aResource, aCategory 6= null; contains(aCategory) = false
aCategory) aResource.parentCategories.

contains(aCategory) = true
drop(aResource ∈ RefactoringCompound; Wiki.wikiResources.

aResource) aResource.sections = null; contains(aResource) = false
rename(aResource ∈ RefactoringCompound; Wiki.wikiResources.

aResource, aResource, newTitle 6= null; contains(newTitle) = true;
newTitle) Wiki.wikiResources. aResource.title=newTitle;

contains(newTitle) = false aResource.refactoring_notice =
RENAMENOTICE; aResource.

refactoring_notice =
REDIRECTNOTICE;

split(aResource ∈ RefactoringCompound; Wiki.wikiResources.
aResource, Wiki.wikiResources. contains(newResource) = true;

newResource) contains(newResource) = false aResource.refactoring_notice =
SPLITNOTICE; newResource.

refactoring_notice = SPLITNOTICE;
merge(resources ∈ RefactoringCompound; Wiki.wikiResources.

aResource1, Wiki.wikiResources. contains(newResource) = true;
aResource2, contains(newResource.sections=aResource1.

newResource) newResource) = false sections ∪ aResource2.sections
newResource.title = aResource1.title

+ aResource2.title; aResource1.
refactoring_notice =

MERGENOTICE; aResource1.
refactoring_notice =

REDIRECTNOTICE;
aResource2.refactoring_notice

= MERGENOTICE;
aResource2.refactoring_notice =

REDIRECTNOTICE;
newResource.refactoring_notice

= MERGENOTICE;
move(resources ∈ RefactoringCompound; sourceResource.sections.

aSection, sourceResource.sections. contains(aSection) = false;
sourceResource, contains(aSection) = true; targetResource.sections.
targetResource) targetResource 6= null; contains(aSection) = true;

sourceResource.refactoring_notice =
MOVENOTICE; targetResource.

refactoring_notice = MOVENOTICE;

111

Improving Creation, Maintenance and Contribution in Wikis with DSLs

• Readership independence: readers should be able to reach the same

content after or before the refactoring. This principle preserves the
content but not where the content is placed. Such rearrangement
should be traceable so that users can easily find the new location,
and potentially, reverse malicious refactorings.

• Authorship independence: authors should keep their attribution no

matter where the content is finally placed. Acknowledging the
authorship has been reported as a main motivator of contributions
[ASR+10]. It is also one of the Wikipedia’s good practices. Wiki
refactoring must preserve authorship.

Such principles are to be engineered as part of the operational semantics of
the refactoring operations. Figure 4.8 provides the operational semantics
for Merge(aResource1, aResource2, _newResource):

• (lines 1-13) The _newResource is created either as an Article or
a Category, whose title is created by concatenating the titles of
the merging resources (line 13). A refactoring_notice with type
MERGENOTICE is added (line 12).

• (lines 14-28) This _newResource is associated with its first revision
(line 28). This implies first, create a revision (line 21), whose content
is that of the merging resources plus the merge notice (lines 23-
24). Authorship independence advises that attribution is given to
the original author. This recommendation is followed by adding
the mergeNotice that notes the origin of the resource (e.g., “The

content of this page has been merged from [[aResource1]]] and

[[aResource2]]] by Admin”) (lines 18-20). Square brackets denote
the URL of the article at hand. Readership independence suggests
that when an article is merged, an edit_summary should be left in
the _newResource (line 25) i.e., content that helps identify the merge
operation in the page’s history.

112

Chapter 4. Wiki Refactoring through Mind Map Manipulation

Figure 4.8: Merge operational semantics.

113

Improving Creation, Maintenance and Contribution in Wikis with DSLs

• (lines 29-30) The _newResource is categorized along the lines of the
merging resources.

• (lines 31-40) Collaborative refactoring implies refactoring decisions
to be publically noted. WikiWhirl notes the refactoring through
talk pages associated with the resources (aResource1, aResource2

and _newResource), which can eventually frame discussions about
this refactoring change. These lines create a talk page for
the _newResouce, and associates this talk page with a revision
describing the refactoring. Likewise, similar talk pages are
associated with both source resources, aResource1, aResource2.

• (lines 41-48). Readership independence also requires a mechanism
to avoid dangling references. The source resources have to
dynamically redirect readers to the new location of the content.

Following lines present a brief for the rest of the WikiWhirl operations,
while omitting simple operations such as create, rename article, drop,
categorize, etc.:

• Rename (aCategory, newTitle). To rename aCategory, a new
category with title newTitle is created with the content of aCategory,
which becomes a redirect page to the category newTitle. In addition,
all the category tags linking to it must be renamed, to pertain now to
the category newTitle. A talk page opens a way to discuss the new
change.

• Split (aResource, newResource). The title of the newResource

results from concatenating the title of aResource with “_split” (e.g.,
“Steroids_split”). As for authorship and readership independence,
a comment in the edit summary of the newResource must be made
to note the split operation, as well as to create the corresponding
discussions in the affected pages.

114

Chapter 4. Wiki Refactoring through Mind Map Manipulation

• Move (aSection, sourceResource, targetResource). Here, the
same recommendations are followed that for article splitting,
i.e., introducing in the associated talk pages a note such as
“Section aSection from sourceArticle was copied into newArticle

at timestamp”. In addition, the recentChanges page of the
sourceResource is to include a summary, noting the origin of
this article (e.g., "Section aSection move to [[targetArticle]]").
Likewise, the recentChanges page of the targetResource should
also include the summary "Section aSection being moved from

[[sourceName]]").

The aforementioned metamodel constructs need a textual or visual
representation counterpart. This is the aim of the concrete syntax.

4.6 WikiWhirl: The Concrete Syntax

There may be different concrete syntaxes for the same abstract syntax
where each concrete syntax might stand for the entirety or a subset
of the abstract syntax. Here, we focus on the most complex part:
the Wiki construct. A Wiki model is a compound of WikiResources.
WikiResources can be RefactoringResources and SupportingResources.
The latter are automatically inferred during the refactoring process.
That is, RefactoringResources are not the subject of refactoring but the
byproduct of this process. Basically, they keep traces and notices for
the wiki community to reconstruct the refactoring process. Therefore,
SupportingResources are not explicitly handled by the user but are created
or modified as a result of operating upon the RefactoringResources,
what makes the focus on how to specify Wiki models that contain
RefactoringResources. Next, it follows a brief on the use of mind maps
as an appropriate graphical notation for Wiki models.

While the abstract syntax addresses expressiveness, the concrete syntax
cares for the DSL usability and understandability. Proposed alternatives

115

Improving Creation, Maintenance and Contribution in Wikis with DSLs

for wiki visualization are influenced by their aims: visualize author
collaboration [VWD04], depict article relationships (e.g., Annoki [TS10]),
outline the wiki structure (e.g., WikiNavMap [UK07]), etc. In addition,
the expressiveness of these representations should be balanced against
affordance for the target audience. Therefore, we need to look into (i) the
characteristics of the object to be handled (e.g., its size), (ii) how this object
is to be manipulated, and (iii) the context of use i.e., “the users, tasks,
equipment, and the physical and social environments in which a product is
used” [ISO].

Wikis are graphs, where nodes stand for pages and edges denote
relationships between those pages. For corporate wikis, their size is
estimated an average of up to 1,500 nodes [SB09]. Next, we consider
manipulations i.e., the process of refactoring a wiki. Two approaches co-
exist. In the bottom-up approach, the user knows the subject of refactoring
(i.e., you know which article/category needs to be refactored), and next, a
larger view might be required to set this subject into a larger context. By
contrast, the top-down approach starts with a global view of the wiki, and
next, the user looks for “bad smells” (e.g., too deep category hierarchies
with few articles may indicate too much structure). This way of working
calls for agile visualizations that permit to define “views” over existing
wiki graphs as well as to collapse or extend these views as we gain
understanding about the refactoring requirements. Finally, the context of
use is that of knowledge workers who access the wiki within the boundaries
of an organization. On these grounds, we next advocate for the use of mind
maps as the notation for WikiWhirl expressions.

Why mind maps as for the manipulations of wikis. Wiki refactoring is
akin to mind mapping. Two observations should, however, be made. First,
equating nodes to wiki topics should consider the ’embryonic’ nature of
those topics, in the sense that they are generally not stable but evolve
as the understanding about the topic develops. So “wiki nodes” are not
immutable, ontological notions but ideas in the process of formation.
Second, wikis are graphs whereas mind maps tend to have a radial,

116

Chapter 4. Wiki Refactoring through Mind Map Manipulation

hierarchical disposition of nodes. However, this radial disposition of nodes
facilitates ’the drilling down’ and ’the rolling up’ along the different radius
of the map.

Why mind maps as for the target audience. Mind mapping is catching
on within organizations. A survey performed to 334 respondents about
the use of mind maps showed that they are mainly used for project
planning, brainstorming, knowledge and project management or to-do
lists [Fre10]. Interestingly enough, 21% of the respondents apply mind
maps as a blueprint for the development of websites, i.e., to outline the
website structure. Besides that, users perceive many benefits like the
improvement of clarity of thinking, management information overload,
visualizing information relationships or organizing better. An evidence
of this popularity is the number of tools for mind mapping14.

Based on these observations, we select mind maps as the notation for
Wiki models.

4.6.1 Wiki Models as Mind Maps

The different elements that conform a mind map are explained in the
Chapter 3, Section 3.4.2. Next, the Table 4.3 shows the mapping of these
elements (Figure 4.9) to the Wiki constructs in Figure 4.7. WikiResources

are classified as Categories, Articles and Sections. This categorization
is denoted through icons: the “category” icon , the “article” icon and
the “section” icon, respectively. Next, we describe relationships. Since
some relationships are M:N (e.g., parent categories), the first relationship
instance is represented through an edge (the links that support the tree-like
structure) while the rest of the relationship instances are denoted through
arrowlinks. Figure 4.4 illustrates this situation. Category Blood_Changes

belongs to two categories; the relationship with Clinical_Pathology is
denoted by an edge while that of WikiBlood is depicted as an arrowlink.

14For a comparison refer to www.collegedegree.com/library/
college-life/99-mind-mapping and en.wikipedia.org/wiki/List_of_concept-
_and_mind-mapping_software (accessed December 2012).

117

www.collegedegree.com/library/college-life/99-mind-mapping
www.collegedegree.com/library/college-life/99-mind-mapping
http://en.wikipedia.org/wiki/List_of_concept-_and_mind-mapping_software
http://en.wikipedia.org/wiki/List_of_concept-_and_mind-mapping_software

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Table 4.3: From abstract constructs to their realization as mind map
primitives.

WikiWhirl primitives Mind map primitives FreeMind primitives
“Wiki” class Root node Root node

“title” property node title: Text node title: Text
“URL” property Link Link
“Category” class Node with a Node with icon

“category” icon
references:

first “parentCategories” edge edge
rest “parentCategories” arrowlink arrowlink

“Article” class Node with an Node with icon
“article” icon

references:
first “parentCategories” edge edge
rest “parentCategories” arrowlink arrowlink

“Section” class Node with a Node with icon
“section” icon

“itsPage” reference edge edge
“catneeded” Node with Node with

notice “catneeded” icon “flag-red” icon
“catimprove” Node with Node with

notice “catimprove” icon “flag-blue” icon
“catdiffuse” Node with Node with

notice “catdiffuse” icon “flag-yellow” icon

Finally “catneeded”, “catimprove” and “catdiffuse” notices are mapped to
the namesake icons. The rest of the notices are not to be provided by the
user but automatically generated as part of the operational semantics of the
refactoring operations. Therefore, they do not have a counterpart in the
concrete syntax.

4.7 WikiWhirl: Tool Support

Rather than developing our own visual editor for mind maps, we capitalize
on FreeMind. As previously commented (Chapter 3), FreeMind supports

118

Chapter 4. Wiki Refactoring through Mind Map Manipulation

Figure 4.9: FreeMind XML Schema for map drawing (represented as a
Ecore metamodel).

easy edition and visualization of mind maps (e.g., nodes are easily moved
around, branches collapsed, etc.). Choosing an existing tool not only
speeds up development, learnability is the big plus on the hope that the
target audience (i.e., employees in corporate wikis) may already be familiar
with FreeMind.

Turning FreeMind into a refactoring platform implies for FreeMind
to become: (i) an editor of Wiki maps, (ii) an enactor of refactoring
operations, (iii) an interpreter of refactoring operations, and (iv), a
workplace for refactoring sessions.

4.7.1 FreeMind as an Editor of Wiki Maps

Section 4.6 addressed the suitability and the sufficient expressiveness of
mind maps to capture Wiki models. Now, the focus is on a particular

119

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Table 4.4: Mapping WikiWhirl operations to FreeMind interactions.
WikiWhirl FreeMind FreeMind Error message
operation interaction if precondition violated

create(click ’create node’ sections cannot be created;
newTitle, newTitle cannot be null;

Page) newTitle already exists
categorize(draw an arrowlink to sections cannot be categorized;
aResource, a category node or drag aCategory cannot categorize itself;
aCategory) a node to a category node aCategory must exist

uncategorize(click ’remove’ an arrowlink to sections cannot be uncategorized;
aResource, a category node or move aCategory must exist
aCategory) a node to the root node

drop(click ’remove’ a node sections cannot be removed;
aResource) aResource has section descendants

rename(edit the text of a node sections cannot be renamed;
aResource, newTitle cannot be null;
newTitle) newTitle is already taken

split(select node + sections cannot be split;
aResource, right-mouse click newResource cannot be null;

newResource) “WikiWhirl split” newResource already exist
merge(select node aResource1 + sections cannot be merged;

aResource1, select node aResource2 + newResource cannot be null;
aResource2, right-mouse click newResource already exist

newResource) “WikiWhirl merge”
move(drag aSection node + aSection must pertain

aSection, drop aSection node to targetResource node to sourceResource;
sourceResource, targetResource must exist
targetResource)

implementation of mind maps. FreeMind uses XML Schema to specify
maps. Figure 4.9 shows the metamodel counterpart of such schema
(explained in Chapter 3 Section3.4.2). Table 4.3 shows the mapping with
the FreeMind primitives. For instance, “catneeded”, “catimprove” and
“catdiffuse” notices are mapped to the “flag-red” icon , “flag-blue” icon

and “flag-yellow” icon available in FreeMind, respectively.

However, this mapping is not enough. A WikiWhirl’s Wiki model is
a compliant FreeMind mind map. However, the opposite does not hold.
Some FreeMind maps might not deliver a compliant Wiki model, where
compliance is determined by the WikiWhirl’s abstract syntax. Therefore,
WikiWhirl maps are a subset of the possible maps that can be drawn
in FreeMind. FreeMind uses a XML Schema to denote what is a valid
map. On top of it, a set of constraints ensures that mind maps account for
compliant Wiki models (i.e., conform to the WikiWhirl abstract syntax).

120

Chapter 4. Wiki Refactoring through Mind Map Manipulation

4.7.2 FreeMind as an Enactor of Refactoring Operations

The implications of FreeMind as an enactor of refactoring operations are
two-fold. First, FreeMind front-end should provide a way for the user
to conduct the operation. For instance, creating a category implies to
position the cursor in a node, right click and select “new child node”,
name the newly created node and finally, add the “folder” icon . Most of
the WikiWhirl operations have a direct mapping to FreeMind interactions
(e.g., click, drag, drop, move) (see Table 4.4). Only Merge and Split, do
not have a direct counterpart. As a result, we extend the right-mouse-click
menu with two options, WikiWhirl split and WikiWhirl merge (see Figure
4.10b). Once a node (or two to merge) is selected, the user can right-click
on the mouse to perform the desired operation (i.e., merge or split).

However, some FreeMind interactions though possible, might be
invalid from a refactoring perspective: nodes that stand for sections can
only be dragged but never removed; nodes that denote articles/categories
can be deleted only if they do not contain sections, etc. That is,
preconditions of WikiWhirl operations should be obeyed. Basically,
preconditions play a similar role to structural constraints: they restrict
FreeMind to conform to the WikiWhirl semantics. This leads us to the
second implication.

FreeMind acts as a requester of WikiWhirl operations on behalf of
the user. Along with the design-by-contract principles, the requester
should guarantee that preconditions are met before enacting the operation.
That is, WikiWhirl should ensure that the user interaction complies
with the refactoring operations preconditions. Figure 4.4 indicates how
preconditions are turned into error messages. Figure 4.11 shows two
examples where users are prevented from violating WikiWhirl semantics
(even though the interactions are totally valid FreeMind interactions).
The error messages describe the cause of the violation in terms of
WikiWhirl semantics. As wisely noted in [BAGB11], any user interface
is a realization of a language with two directions: human-computer and

121

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Figure 4.10: Turning FreeMind into a “Wiki Refactoring” tool. (i) The
configuration menu, and (ii) the popup menu (right mouse click).

computer-human, since the feedback from the computer needs also to be
interpreted by the humans. In this way, WikiWhirl acts as a learning tool
about good practices in refactoring.

4.7.3 FreeMind as an Interpreter of Refactoring
Operations

FreeMind becomes an interpreter of refactoring operations. The
operational semantics is now concretized for a given wiki engine. We
choose MediaWiki. The constructs Article, Category, Talk, etc. find
a specific realization in terms of the database schema of MediaWiki.
Refactoring operations become transactions over the wiki database, and

122

Chapter 4. Wiki Refactoring through Mind Map Manipulation

Figure 4.11: Two scenarios that raise refactoring errors: (left) removal
of the section node “Hepatotoxicity” violates the pre-condition of the
drop operation, and (right), merging two node sections violates the pre-
condition of the merge operation.

the operational semantics is realized as an SQL script upon the MediaWiki
tables. Appendix B shows the SQL script for the merge operation.

4.7.4 FreeMind as a Workplace for Refactoring Sessions

In this section does not look so much at the definition of WikiWhirl but
at using WikiWhirl. By experiencing different refactoring scenarios, we
come up with additional requirements for FreeMind to smoothly support
the process of refactoring a wiki. Requirements include: (i) dynamic
loading of Wiki models, (ii) refactoring transactions, and (iii) FreeMind-
MediaWiki roundtrips.

Loading of Wiki models. Most scenarios do not start with an empty
wiki but with a wiki that already exists. This requires an “import” utility
that obtains a Wiki map out of an existing wiki. To this end, FreeMind
is extended with an import utility that loads the wiki corpus from a
MediaWiki installation. Figure 4.10a shows the configuration menu for
such utility along two parameters: the configuration service and the load

mode. The former indicates the database service parameters (i.e., database
name, db user login, db password, db host name). The latter, i.e., load

mode, filters the type of nodes to be loaded for the sake of efficiency.

123

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Figure 4.12: The WikiWhirl tracking window traces the refactoring
operations.

Nodes can be filtered by either name or type. The former permits to focus
on some part of the wiki based on the category name: the category and
all its descendants are loaded. By contrast, type-based filtering permits to
focus on structural refactoring (type = “category”) or content refactoring
(type = “content”) by filtering by category nodes or rather, rendering all,
categories, articles and sections alike.

Refactoring transactions. FreeMind sessions tend to look more like
transactions where the user takes the decision about committing the session
once he observes the resulting map. FreeMind has been extended with a
tracking window (see Figure 4.12) where user interactions are described
in terms of WikiWhirl operations. This window offers three buttons: the
Commit button that makes the changes to endure in the wiki database; the
Delete button, that removes the highlighted operation from the trace; and
the Refresh wiki mind map button, which restores a database dump and
regenerates the mind map. Workers can play around, exchange insights,
and finally, commit to the resulting structure.

FreeMind-MediaWiki roundtrips. Users tend to move back and forth

124

Chapter 4. Wiki Refactoring through Mind Map Manipulation

Figure 4.13: WikiWhirl architecture.

between the FreeMind view and the MediaWiki view. FreeMind permits a
smooth transition between both views by turning node titles into URLs. In
this way, the Wiki map becomes “a site map” for MediaWiki installations
i.e., the map accounts for a global view of the wiki where users are a
click-away from the HTML page in the MediaWiki front-end. This serves
two purposes. First, to access the full content, should this matter for the
refactoring purpose. Second, to check out the outcome of the refactoring
operations. Once some refactoring operations are committed, users can
move to the MediaWiki view to see the impact of such refactoring. This
reinforces the perception of the WikiWhirl and the MediaWiki front-ends
as complementary views of the wiki corpus.

4.7.5 Architecture of the WikiWhirl Plugin

The WikiWhirl plugin pivots around three main components (Figure 4.13):

• The core component, which confines FreeMind to the semantics of
WikiWhirl. This includes the additional restrictions on the Wiki map,
the validation of the pre-conditions upon user interactions (and the
corresponding error messages), and the tracking window.

• The importer component, which extracts mind maps out of the wiki

125

Improving Creation, Maintenance and Contribution in Wikis with DSLs

databases. For this purpose, we used Schemol (Appendix A).

• The exporter component, which enacts the refactoring script. This
process is threefold. First, the refactoring trace (as specify in
the tracking window) is mapped to a WikiWhirl model using the
EMF persistence framework15. Second, the WikiWhirl model is
transformed into an SQL script. This model-to-text transformation
is realized through MOFScript. Finally, this SQL script is enacted
against the MediaWiki DBMS (i.e., MySQL).

Wiki engines other than MediaWiki can be used. WikiWhirl could
be extended by modifying the previous components. Specifically, the
importer would need a new Schemol transformation to cope with the
new database schema, and the exporter would need a new MOFScript
transformation to generate the required SQL statements for the new
DBMS.

Architecturally, the WikiWhirl plugin is a traditional database
application: it queries the MediaWiki database, processes the tuples (e.g.,
renders the mind map), and saves some tuples back. By large, the most
costly part is querying the database, specifically in two points (i) when
sections are to be extracted out of large articles, since all the raw text of
articles needs to be parsed, and (ii) when the category hierarchy is large,
due to the need of recursively traverse the category tree. We conducted
some tests to measure how WikiWhirl performs on four scenarios. The test
was carried out on in a desktop PC Quad core 8GB RAM 64-bit connected
to a remote database. Figure 4.14 depicts how WikiWhirl scales as the
number of nodes varies16. These figures show that WikiWhirl handles
efficiently most of the common refactoring scenarios. Worth noticing, once
tuples are loaded and the map displayed, the database session is closed.
This implies that keeping the map on display has no impact on the wiki
database. Hence, it is possible to use the very same WikiWhirl map for

15http://eclipse.org/modeling/emf/ (accessed December 2012).
16Actually, tuples are the artefacts being loaded that are next transformed into nodes.

126

http://eclipse.org/modeling/emf/

Chapter 4. Wiki Refactoring through Mind Map Manipulation

Table 4.5: Performance test in four scenarios.
Scenario Nodes Load time

Categories Articles Sections Total seconds
Wiki 50 0 0 50 20

initialization
Structure 5 20 0 25 6

refactoring
Content 5 20 80 105 15

refactoring
Refactoring 70 350 800 1220 4200

complete view

Figure 4.14: Graphics for the performance test in Table 4.5.

different refactoring sessions, hence, saving the loading phase at the onset.
This might cause the map to get outdated as other users update the wiki
through the MediaWiki view (e.g., deleting a category or an article). This
is certainly possible. Should this happen, a transaction error will arise at
the time the user attempts to save the refactoring that happens to act upon a
node that has disapeared. The user would need to reload the map and start
again. It is up to the user to estimate the likelihood of this error based on
the potential number of users and the scope of the refactoring.

4.8 Evaluation

WikiWhirl aims to increase refactoring affordance for knowledge workers.
Affordance is a perceived opportunity for action and perception is the

127

Improving Creation, Maintenance and Contribution in Wikis with DSLs

organization, identification and interpretation of sensory information in
order to represent and understand the environment. Here, the environment
is the wiki, and the action on this environment is refactoring. WikiWhirl
seeks to increase the perceived opportunity for wiki refactoring (the
action). This is achieved by (i) surfacing the structure of the wiki
corpus through mind maps (“the sensory information”), and (ii) conducting
refactoring as mind map reshaping. This section evaluates to which extent
this aim has been fulfilled.

Therefore, WikiWhirl is compared with MediaWiki (i.e., the baseline
alternative) along tree measures: understandability of the wiki structure,
effectiveness in refactoring, and productivity (i.e., efficacy) in refactoring.
The rationales are that

“enhancing understanding will ease the detection of

refactoring opportunities which, in turn, will impel users

to refactor provided the means to do so in a effective and

efficient way are available.”

If either the wiki structure is difficult to grasp or the refactoring means are
cumbersome to use, then, users will not be inclined to act. This is evaluated
with a controlled experiment. A controlled experiment permits to assess
the existence of a cause-effect relationship between the use of WikiWhirl
and an increased affordance. In software engineering, a controlled
experiment can be defined as a randomized experiment (a.k.a. quasi-
experiment) in which individuals or teams (the experimental units) conduct
one or more software engineering tasks for the sake of comparing different
populations, processes, techniques or tools (the treatments) [SHH+05]. In
this case, the target audience are knowledge workers who are accustomed
to article editing, but with no specific wiki refactoring background. Next
sections delve into the details following the experimental framework
proposed in [JP05].

128

Chapter 4. Wiki Refactoring through Mind Map Manipulation

4.8.1 Experimental Design

First, we state the goal of the experiment using the Goal/Question/Metric
(GQM) method [Bas92]:

• analyze the wiki refactoring affordance of knowledge workers
working with WikiWhirl

• for the purpose of comparing it with a baseline alternative
(MediaWiki)

• with respect to their effectiveness, global understandability and
productivity

• from the point of view of a researcher trying to assess WikiWhirl

• in the context of a case study on selected representative WikiWhirl
operations.

This goal introduces three dependent variables, namely:

1. Global understandability. It is defined as the effort required for the
reading and correct interpretation of the artefact at hand (e.g., a wiki)
[Pat08]. Measuring understandability is still open to debate. As
for how understandability is measured, following the guide defined
in [Pat08] to test the understandability of different notations, we
introduce a set of multiple choice questions regarding the structure
and the semantic content of a wiki. Both, the number of questions
answered in the allocated time, and the number of such questions
that were correctly answered are evaluated.

2. Effectiveness. It is defined as “the capability of the software
product to enable users to achieve specified goals with accuracy
and completeness in a specified context of use” [ISO]. To measure
accuracy and completeness, a point will be assigned to each action
that follows the good practices in the course of a refactoring

129

Improving Creation, Maintenance and Contribution in Wikis with DSLs

operation. For instance, 7 points can be earned for a merge if the
user performs the following tasks: create new article, copy and paste
content of each source article, add summary, create discussion, and
create redirects from both source articles to the new one. The more
points the participant obtains, the more complete and accurate the
task outcome. In addition, we also measure whether the participants
have been able to complete the task in the allocated time.

3. Productivity. It is defined as “the capability of the software product
to enable users to expend appropriate amounts of resources in
relation to the effectiveness achieved in a specified context of use”
[ISO]. In this context, productivity is used for its relation with time
availability. Productivity will be measured using task completion
time.

The independent variables include WikiWhirl as the tool to be measured,
and MediaWiki as the baseline alternative. Hence, the experiment follows
a unifactorial design where the rest of the parameters are controlled. These
controlled parameters include:

1. The participants’ previous exposure to MediaWiki. We control
this variable through a randomized block design where MediaWiki
knowledge is the blocking variable [Spe93]. That is, participants are
divided into three groups depending on their previous MediaWiki
skills, and only inside these groups are they randomly assigned to
the WikiWhirl or MediaWiki groups. This ensures a comparable
MediaWiki background in both experimental groups.

2. The subjects’ familiarization with the domain used for the wiki in the

experiment. We ensure equal understandability by selecting a wiki
from the veterinarian domain where the participants have a similar
and scarce knowledge.

3. The experimental setting. The very same laboratory, experiment start
time, observers and trainers will be used for both groups.

130

Chapter 4. Wiki Refactoring through Mind Map Manipulation

Hypotheses. The goal above leads to the following hypotheses:

• H1null Using WikiWhirl has no impact on effectiveness when
contributors perform refactoring operations on a wiki.

• H1alt Using WikiWhirl has a significant impact on effectiveness

when contributors perform refactoring operations on a wiki.

• H2null Using WikiWhirl has no impact on global understandability

when contributors perform refactoring operations on a wiki.

• H2alt Using WikiWhirl has a significant impact on global

understandability when contributors perform refactoring operations
on a wiki.

• H3null Using WikiWhirl has no impact on productivity when
contributors perform refactoring operations on a wiki.

• H3alt Using WikiWhirl has a significant impact on productivity

when contributors perform refactoring operations on a wiki.

Participants. Participants were recruited among the Computer Science
Faculty and Ph.D. students of the University of the Basque Country. The
only prerequisite is to have experience on wiki editing with MediaWiki.
Participants from this sample can be assumed to have a similar background,
while having an above average command of software and new technologies
(see Subsection 4.8.4).

Tasks. Three tasks were designed:

1. Comprehension Task. In order to measure global understandability,
participants are confronted with a subset of the WikiVet wiki (see
Figure 4.3), and a set of questions to assess to which extent they
apprehend the deep structure of this wiki (see Appendix C). The
questionnaire was prepared along the guidelines of [Pat08].

131

Improving Creation, Maintenance and Contribution in Wikis with DSLs

2. Structure-refactoring Task. Based on this initial WikiVet wiki,
participants will conduct distinct structure refactoring operations:
create, categorize, uncategorize, rename and drop. The description
of these tasks corresponds to the one introduced in Subsection 4.2.2.

3. Content-refactoring Task. Based on the initial WikiVet wiki,
participants are told to conduct distinct content refactoring
operations: split, merge and move. The description of these tasks
corresponds to the one introduced in Subsection 4.2.3.

Note that wiki initialization is left out of the experiment, as wiki
initialization does not per se involve refactoring. It was excluded to shorten
the experiment and avoid negative position effects (e.g., participants
getting bored or tired) [Sar05].

Instrumentation. As aforementioned, a randomized block design is
used using previous MediaWiki knowledge as the blocking variable. To
this end, a questionnaire on MediaWiki knowledge and the frequency of its
use by participants was designed (see Appendix C). A 50 minute training
session was created for both groups. This training teaches how to perform
refactoring operations with either MediaWiki or WikiWhirl depending on
the group. For the experiment itself, handouts were written with textual
instructions (e.g., what operation to perform on the wiki, when to take note
of the time, etc). The slides used in the training (the same number of slides
for both groups), will also be provided to participants. Two additional
questionnaires were created, one to evaluate global understandability (see
Appendix D) and another to gather the final results (see Appendix E).

Data Collection Procedure. Three different ways of data collection
are envisioned. First, two observers will be present on each group
to gather qualitative data on the execution. Second, execution time
and questionnaire responses will be manually introduced by participants
using the corresponding online questionnaire (see Appendix E). Third,
authorship and readership errors will be manually collected by the
observers after the execution of the experiment by recovering database

132

Chapter 4. Wiki Refactoring through Mind Map Manipulation

dumps and logs from the computers used by participants. All this data
will be collected anonymously. The data from the different sources (i.e.,
previous MediaWiki knowledge, understandability questionnaire, final
questionnaire and computer data) for the same participant will be linked
using a code.

Analysis Procedure. Descriptive statistics will be used to characterize
the sample and to evaluate the participants’ experience. Moreover, t-test

analyses will be performed to assess differences among the MediaWiki and
WikiWhirl groups. In case of statistically significant differences, Cohen’s

d will be used to calculate the size of the effect [Coh88]. IBM SPSS
Statistics 20 for Windows17 will be employed to perform the different
analyses.

4.8.2 Execution

This section summarizes the execution of the aforementioned experiment
conducted in December 2012. A call was issued to the faculty and Ph.D.
students of the Faculty of Computer Science of the University of the
Basque Country asking for volunteers to participate in the experiment.
The call specified that wiki contributors were sought, so knowledge of
how to edit an article was a must. It also stated that participants of
the experiment would learn about wiki refactoring and enjoy a drink
and a snack after completion. Thirteen people answered the call, three
lecturers and ten Ph.D. students. Before the experiment they answered
the questionnaire regarding MediaWiki knowledge. When processing their
answers, an outlier who had a considerable experience in wiki refactoring
was identified. Out of 34 possible points in the questionnaire, he obtained
27 while the second person with more MediaWiki experience obtained
16. Hence, the outlier was eliminated from the sample. As a result,
a fairly homogeneous group of 12 participants was obtained, with an

17www-01.ibm.com/software/analytics/spss/products/
statistics (accessed December 2012).

133

www-01.ibm.com/software/analytics/spss/products/statistics
www-01.ibm.com/software/analytics/spss/products/statistics

Improving Creation, Maintenance and Contribution in Wikis with DSLs

average of 10.33 points (out of 34) and a standard deviation of 2.57 in
MediaWiki background. All participants indicated they knew how to
edit an article and 75% knew how to create one, but 50% never actually
perform the operation. Only two participants reported they knew how to
create categories and none of them knew how to delete articles. None
ever performed refactoring operations (i.e., reorganize existing articles and
categories).

To ensure these 12 participants were evenly distributed among the
MediaWiki group and the WikiWhirl group, a randomized block design
was used. Participants were classified along three clusters of four people
each based on the points obtained in the questionnaire: 7 to 9, 10 to 11
and 11 to 16. Within each cluster, participants were randomly assigned to
either the MediaWiki group or the WikiWhirl group.

Hardware homogeneity was ensured by using the very same laboratory
for both groups. All participants used computers with the same features
(i.e., Intel Core 2 1.86 GHz, 3 GB RAM and Windows XP Professional
SP3) and a clean installation of MediaWiki version 1.16.1. The individual
MediaWiki installations are required to allow each participant to perform
her own refactoring operations. On top of this, the WikiWhirl participants
also had FreeMind 0.9.0 and WikiWhirl 0.3 installed. Each group was
cited at the same hour (4.30 pm) of two different days. The same observers
participated.

Before the experiment began, every participant signed an informed
consent. Both groups received a 50’ training on wiki refactoring. The
same trainer gave a brief introduction on wikis, wiki evolution and
wiki refactoring (10’) and then explained the different operations that
are performed during refactoring (40’). As the operations were being
described, participants executed them in a local installation each had for
learning purposes. This training installation is based on Evelopedia, a wiki
on online games18. This training was followed by the three experimental
tasks (see Subsection 4.8.1).

18http://wiki.eveonline.com/ (accessed December 2012).

134

http://wiki.eveonline.com/

Chapter 4. Wiki Refactoring through Mind Map Manipulation

Table 4.6: Participant Background along a Likert scale from 1 (none) to 5
(expert).

Item Mean St. Dev.
Programming 4.00 0.74

Web Engineering 3.75 0.62
Web 2.0 3.33 0.89

Collaborative Systems 2.41 0.51
Mind Maps (WikiWhirl participants) 2.14 1.12

4.8.3 Analysis

This section analyses the data collected from the experiment. Descriptive
statistics are described first, then hypothesis testing is carried out followed
by an analysis of other parameters that might have influenced the result.

Descriptive Statistics

Participant background. Twelve participants from the Faculty of
Computer Science of the University of the Basque Country participated
in the experiment (3 lecturers and 9 Ph.D. students). The majority of
participants were male (58.3%). Regarding age, the average was 31.5
years with a standard deviation of 6.17. With respect to their background,
participants had to rate themselves using a Likert scale from 1 (none) to 5
(expert). Results can be seen in Table 4.6. Note that participants working
with WikiWhirl were asked their background with mind maps, as it could
have an impact on their performance.

Dependent variables (see Table 4.7)

1. Global understandability. It is measured through the comprehension
task. Specifically, we count the number of answers fulfilled in the
allocated time (20’) and, out of them, the number of correct answers.

2. Effectiveness. It is measured through the refactoring tasks.
Through a questionnaire, participants indicated to which extent they
considered that the tasks have been completed in the allocated time

135

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Table 4.7: Experimental Measures.
MediaWiki WikiWhirl

Variable Metric Mean St. Mean St.

Dev Dev

Global # Answers (out of 14) 6.00 1.09 14.00 0.00

Understandability # Correct Answers 4.50 0.84 12.50 1.05

Struct. Ref. Completed 0.33 0.52 1.00 0.00

(range: ’1’ fully, ’0’ none)

Effectiveness # Struct. Ref. Points 14.67 4.80 23.00 0.00

(range: ’23’ fully, ’0’ none)

Cont. Ref. Completed 0.50 0.55 1.00 0.00

(range: ’1’ fully, ’0’ none)

Cont. Ref. Points 20.83 6.46 36.00 0.00

(range: ’36’ fully, ’0’ none)

elapsed time for the 20.00 0.00 12.17 3.66

comprehension task (minutes)

Productivity elapsed time for the structure- 18.17 3.61 9.67 1.36

refactoring task (minutes)

elapsed time for the content- 17.17 3.19 9.71 3.12

refactoring task (minutes)

(20’) where “1” indicates completion and “0” non completion. It
is worth noticing that in the MediaWiki group only one third of
the participants considered that they had completed the structure
refactoring task. Moreover, we also measured to which extent
the task was correctly achieved, i.e., preserving authorship and
readership independence (e.g., including redirects, notices, etc). In
this case, WikiWhirl participants obtained all the possible points, as
these actions are transparently performed by WikiWhirl.

3. Productivity. We measured the time spent in each task: the
comprehension task, the structure-refactoring task and the content-
refactoring task.

136

Chapter 4. Wiki Refactoring through Mind Map Manipulation

Table 4.8: Affordance Test Outcome.
Metric t p d

Struct. Ref. Completed -3.162 0.025 -1.825
Struct. Ref. Points -4.250 0.008 -2.454

Cont. Ref. Completed -2.236 0.076
Cont. Ref. Points -5.748 0.002 -3.319

Hypothesis Testing

This section tests the three hypotheses regarding global understandability,
effectiveness and productivity. Hypotheses are evaluated using a t-test.
The outcome is displayed using tables where the t and p columns present
the t value in the t-test and the significance, respectively. In metrics
where statistically significant differences were found, the effect size was
calculated using Cohen’s d [Coh88]. The values are presented in the last
column of these tables.

We begin by analyzing effectiveness. The hyphothesis reads as
follows:

• H1null Using WikiWhirl has no impact on effectiveness when
contributors perform refactoring operations on a wiki.

• H1alt Using WikiWhirl has a significant impact on effectiveness

when contributors perform refactoring operations on a wiki.

Table 4.8 summarizes the results. Regarding the structure refactoring
task, the table shows statistically significant differences, i.e., WikiWhirl
helps participants to fullfil timely (“Struct. Ref. Completed” metric)
and completely and accurately (“# Struct. Ref. Points” metric) the
task at hand. On the other hand, the content refactoring task exhibits
no statistically significant difference for the “Cont. Ref. Completed”

metric (i.e., p > 0.05), although such difference is found for the “# Cont.

Ref. Points” metric. This is most interesting as it seems to suggest
that MediaWiki participants thought they had fullfilled the task at hand
but without following the good practices of preserving authorship and

137

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Table 4.9: Global Understandability Test (H2).
Metric t p d

Answers -17.889 0.000 -10,328
Correct Answers -14.606 0.000 -8.433

readership independence. For the metrics where statistically significant
differences were found (i.e., p < 0.05), the effect size was calculated using
Cohen’s d. A value of this parameter above 0.8 in absolute values denotes a
large effect size as a result of the independent variable (i.e., the introduction
of WikiWhirl) [Coh88]. Except for the “Cont. Ref. Completed” metric,
which indicates a subjective perception of participants, the other metrics
show considerable effect sizes and soundly sustain the case that the null
hypothesis can be rejected, and hence,

WikiWhirl has a significant impact on effectiveness for wiki

contributors

The second hypothesis is related to global understandability:

• H2null Using WikiWhirl has no impact on global understandability

when contributors perform refactoring operations on a wiki.

• H2alt Using WikiWhirl has a significant impact on global

understandability when contributors perform refactoring operations
on a wiki.

Table 4.9 presents the results. Statistically significant differences were
found in both the number of answered questions (“# Answers” metric)
and the number of them that were correct (“# Correct Answers” metric).
Cohen’s d shows large effect sizes for both metrics. Hence, the null
hypothesis is rejected and we infer that using

WikiWhirl has a significant impact on global

understandability when contributors perform refactoring

operations

138

Chapter 4. Wiki Refactoring through Mind Map Manipulation

Table 4.10: Productivity Test (H3).
Metric t p d

Understandability 5.248 0.003 3.030
Struct. Ref. 6.212 0.000 3.586
Cont. Ref. 4.389 0.001 2.534

The significant differences between MediaWiki (4.5 mean) and WikiWhirl
(12.5 mean) on correctly answering the test in the 20’ frame (see Table
4.7) highlight the difficulty of easily grasping the wiki corpus with current
wiki front-ends. As a conjeture, this situation might be due to wikis
being iniatially thought for open encyclopedia-like wikis. Having a global
understanding of the wiki corpus (even a subpart of it) was not a priority.
Wikipedia is article minded rather than corpus minded. It sits the article at
the center for editing, searching and navigating. However, corporate wikis
look at wikis not only as archives of knowledge for later referral but also as
enablers of knowledge formation. This might require to step back and look
at the structure of the corpus before delving into a particular article. What
is needed is a fluent mechanism that permits switch between both views.

The last hypothesis is related to productivity.

• H3null Using WikiWhirl has no impact on productivity when wiki
contributors perform refactoring operations on a Wiki.

• H3alt Using WikiWhirl has a significant impact on productivity

when wiki contributors perform refactoring operations on a Wiki.

Table 4.10 shows how statistically significant differences were found in
the time participant spent in each task. Cohen’s d again shows large effect
sizes for the three metrics that were evaluated. Hence, the null hypothesis
is also rejected and we infer that

WikiWhirl has a significant impact on productivity when

contributors perform refactoring operations

139

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Table 4.11: Mind Map Knowledge Comparison.
Low High Comparison

Knowledge Knowledge

Variable Metric Mean St. Mean St. t p
Dev Dev

Global # Answers 14.00 0.00 14.00 0.00

Understandability # Correct 12.00 0.82 13.50 0.71 -2.191 0.094

Answers
Struct. Ref. 1.00 0.00 1.00 0.00

Completed
Struct. 23.00 0.00 23.00 0.00

Affordance Ref. Points
Cont. Ref. 1.00 0.00 1.00 0.00

Completed
Cont. Ref. 36.00 0.00 36.00 0.00

Points
Understandability 11.75 4.57 13.00 1.41 -0.359 0.738

Productivity Struct. Ref. 9.25 0.96 10.50 2.12 -1.072 0.344

(mins) Cont. Ref. 9.75 3.77 8.00 1.41 0.604 0.578

Parameter Influence

Next step was to check whether previous background on mind mapping
would favor the positive results obtained by the WikiWhirl group. Hence,
WikiWhirl users were asked to rate their background in the matter using
a Likert scale from 1 (none) to 5 (expert). The results from the four
participants with low previous knowledge (2 or less in the scale) and the
two ones with higher knowledge (3 or more) were compared.

Table 4.11 presents the results. In the cases of number of answers,
completion of structure and content refactoring and the associated points
results are exactly the same for both groups (hence, no t-test could be
performed). This shows that there were no differences among both groups.
For the rest of the metrics, no statistically significant differences were
found between the results of both groups either.

Overall, the results support the hypotheses regarding the gains obtained

140

Chapter 4. Wiki Refactoring through Mind Map Manipulation

by empowering knowledge workers with a tool to ease refactoring. We can
conclude that the use of WikiWhirl significantly improves wiki refactoring
affordance for wiki contributors by improving global understandability, by
reducing refactoring procedure skills and by reducing the need for time
availability as it increases productivity.

4.8.4 Threats to Validity

A main concert for internal validity in our case is the appropriateness of
the sample size. Johnson et al. suggest six participants per group as the
minimum required for a controlled experiment [Joh92]. Our experiment
accounted precisely for six subjects in each group. Even though our
results show statistically significant differences and large effect sizes,
larger groups are needed to corroborate these findings.

A second issue concerns the participants’ background. So far, the
experiment was conducted in a controlled environment, where participants
were closely guided in the tasks. Moreover, it took place in an academic
setting where participants have a strong background in computer science.
Even though the refactoring tasks as such tend to be similar no matter
whether the setting is academic or business oriented, the user motivations
might vary. This leads us to external validity. More evaluations need
to be conducted in a real business setting with a more diverse sample
of participants. We reckon that productivity and authorship preservation
would be even more appreciated in a business setting. However, this has
yet to be proven. All in all, this experiment provides first evidences about
the benefits of empowering wiki contributors with high-level refactoring
tools for wikis.

141

Improving Creation, Maintenance and Contribution in Wikis with DSLs

4.9 Wiki Refactoring Backed by the
Community: Ballots

During this chapter, it has been taken for granted that refactoring changes
compliant with good practices will be backed by the wiki community.
However, ask yourself: what happens when a refactoring change must be

backed by the whole wiki community?. This section presents an alternative
idea as a matter of potential discussion.

Figure 4.15: The Ballot Process.

Currently, refactoring in wikis
is commonly done in wikis either
by dedicated people (i.e., assigned
or self-assigned) or by bots.
Roles of people are known as
wikigardeners, wikignomes or just
maintainers [Mad08]. Their duties
include: fixing typos, improving
navigability and readability,
categorizing or rearranging pages,
splitting long pages, adding links,
etc. These roles remind to mow
the grass with a scythe, which is a
manual work, whereas WikiWhirl
advocates for an assisted approach,
like using a lawnmower to mow
the grass.

On the other hand, bots19 are
the most common mechanism for
automating repetitive tasks. Wikis
have many routine tasks to be done

and many of them are too cumbersome to be performed by users (e.g., mass

19http://en.wikipedia.org/wiki/Wikipedia:Bots (accessed
December 2012).

142

http://en.wikipedia.org/wiki/Wikipedia:Bots

Chapter 4. Wiki Refactoring through Mind Map Manipulation

edits or check copyright violations). Bots are tools that take care of article
maintenance.

Unfortunately, and unlike traditional refactoring, no regression test
exists to check the validity of the refactoring output. Some changes, even
if compliant with good practices, can still require to be backed by the
community which ends up bearing the maintenance burden. This calls for
a semi-automatic approach where “refactoring bots” (i.e., bots in charge of
performing changes) interact with wiki users to confirm the upgrades. As
an example, consider a guideline that states that a hierarchy of categories
has too much structure in depth (i.e., too many nested categories with few
articles). A user may think that merging some of those categories would
improve the overall structure. However, the goodness of this outcome
much depends on the user’s mental model, and hence, it is debatable. In
this setting, we propose the ballot process.

The ballot process

The ballot process intertwines actions from the refactoring bot (“rebot”)
and the wiki community as follows (see Figure 4.15):

1. The rebot monitors whether the wiki’s current state violates some
guidelines.

2. If so, the rebot notifies this situation to the wiki community by
setting a discussion page.

3. The discussion page creation launches two parallel activities. First,
the wiki community can now cast votes in the ballot for the issue at
hand. Second, the rebot periodically monitors the discussion, and
counts the votes.

4. If the ballot deadline is reached, the ballot is moved to the pending
state. Now, the wiki administrator accepts or rejects the proposal
based on the ballot outcome by using the categorizing the page in
question with AcceptedBallots or RejectedBallots.

143

Improving Creation, Maintenance and Contribution in Wikis with DSLs

5. If the ballot is accepted then, the rebot conducts the change.

6. If the ballot is rejected then, the rebot records the decision to avoid
future ballots on this issue.

Figure 4.16 shows an example where the generated discussion page by the
rebot communicates that the category Music presents too much structure

in depth (i.e., this category is in a hierarchy of categories too much nested
in the wiki structure). After the creation of the discussion page, users can
vote in that page. Users can also comment on their votes to support their
reasons.

In this situation it is not clear how could fit WikiWhirl with a ballot
process, however this opens new paths to research and discuss as future
work.

4.10 Related Work

Wiki Visualization. Lykourentzou et al. [LDP+12] highlight that wikis
usually exhibit poor structure. On account of this, distinct tools try
to improve the user experience by providing new textual or graphical
representations. However, and as highlighted by Lengler and Eppler
[LE07], there might not be only one appropriate visualization method for a
body of knowledge. The selection of the visualization method depends
on the requirements to meet. The visualization has to emphasize the
aspect of the wiki we are interested on, examples include Sonivis20, Wiki

Explorator21, Sioc MediaWiki22, WikiTracer23, HistoryFlow [VWD04],
WikiNavMap [UK07]) or Annoki [TS10]. Annoki [TS10] is a set
of extensions for MediaWiki to add extra functionality that has two
interesting visualizations: WikiMap and wiEGO. WikiMap shows elements

20http://sonivis.org (accessed December 2012).
21www.kinf.wiai.uni-bamberg.de/mwstat (accessed December 2012).
22http://ws.sioc-project.org/mediawiki/ (accessed December 2012).
23http://wikitracer.com (accessed December 2012).

144

http://sonivis.org
www.kinf.wiai.uni-bamberg.de/mwstat
http://ws.sioc-project.org/mediawiki/
http://wikitracer.com

Chapter 4. Wiki Refactoring through Mind Map Manipulation

Figure 4.16: The rebot generates a discussion page.

(linked pages, authors, etc.) related only to the current shown page.
Nonetheless, this limits the high level view of the whole structure, missing
relations with third-levelled pages (i.e., deeper nodes in the mind map).
WiEGO is a graphical page organizer that creates structure within wiki
pages (similar to drag and drop sections in WikiWhirl) by saving a user-
drawn graph as page sections. Hirsch et al. [HHGC10] coins the term
“Visual Wiki” as a combination of a visual and a textual representation
of a wiki. From this perspective, WikiWhirl offers a hybrid solution
where FreeMind offers the visual view, which is linked to the textual
HTML representation. However, these tools look at visualization as an

145

Improving Creation, Maintenance and Contribution in Wikis with DSLs

end in itself whereas for WikiWhirl visualization is a means towards
refactoring. Hence, WikiWhirl does not offer the detailed revision trace of
WikiTracer or HistoryFlow. Neither does it offer means to visualize inter-
article relationships such as WikiExplorator or WikiNavMap. The aim is
to grasp the structure of the wiki corpus as captured by the wiki categories
as the very first step towards refactoring. In this regard, WikiMindMap

[Nyf09] is a tool that permits to browse Wikipedia articles using mind map
visualization. WikiMindMap creates a node for each section of the article
and also a node for each link of the article to other Wikipedia articles. The
differences with WikiWhirl are (i) the aim (visualization vs. refactoring),
(ii) the focus (sections and intra-links vs. wiki structure), and (iii) range
(Wikipedia-restricted vs. MediaWiki wikis).

Wiki Management. Refactoring is part of wiki management. Wiki
management includes a heterogeneous set of duties: wiki initialization,
“Wiki Refactoring”, spotting typos, etc. No matter the job, a common
effort is to attempt to automatize/assist as much as possible. Bots24 are
the most common mechanism. Wikis have many routine tasks to be
done and many of them are too cumbersome to be performed by users
(e.g., mass edits or check copyright violations). Bots are tools that take
care of article maintenance. However, other cases are more dubious, and
automatic correction might be inappropriate. WikiWhirl contributes by
proposing the use of DSLs as a way to facilitate engagement but leaving
the control in the user’s hand. We took a similar approach when addressing
wiki initialization [DP11a]. Here, the aim was to depict a blueprint of the
wiki as a mind map, and next, generate the wiki’s initial installation. Now
the problem is the other way around. WikiWhirl first extracts the wiki
structure from an existing wiki; next depicts the mind map counterpart,
which can then be modified by the users; finally, the resulting mind map is
transformed into a set of refactoring MediaWiki directives. Only this last
step keeps some resemblance with our previous work on wiki initialization.

24http://en.wikipedia.org/wiki/Wikipedia:Bots (accessed
December 2012).

146

http://en.wikipedia.org/wiki/Wikipedia:Bots

Chapter 4. Wiki Refactoring through Mind Map Manipulation

As for refactoring. Rosenfeld et al. [RFD10] propose a strategy for
semantic wiki evolution based on software refactoring. They identify
“bad smells” and the refactoring pattern counterparts. They introduce
six semantic refactoring operations (e.g., move annotation: change the
subject of an annotation to another) and four bad smells (e.g., concept too
categorized: it belongs to many categories). The differences with our work
stem from (i) the focus (semantic resources vs. wiki structure), and (ii) the
approach (template-based description vs. graphical DSL).

On the other hand, Ward Cunningham is working in a new type of
wikis called “federated wikis” [Cun11]. “Federated” means that pages can
be mixed up with other pages, if so desired. This introduces composition

by refactoring: text, images and data can be drag and dropped between
federated wikis. This mechanism is similar to the one proposed in this
work, where the page sections can be drag-and-dropped between pages, in
a graphical manner. However, our aim is refactoring rather than reuse.

Finally, and besides categories, Wikipedia provides additional means
for grouping articles: lists and navigation templates25. Using pre-defined
templates, a set of related articles can be referred to within a common
structure. These mechanisms can be regarded as a kind of arrangement
of set of articles to ease location. Unlike categories, no auto-linking is
provided, i.e., including an article in a list does not automatically link
back the article to this list. This showcases how MediaWiki support a
basic semantics of categories which separate them from mere hyperlinks
between pages. In a corporate setting, we do not regard an extensive use of
these mechanisms mainly targeting bulky wikis where the sheer number of
articles requires of additional organization mechanisms besides categories.
Hence, WikiWhirl does not address lists and neither navigation templates.

25See http://en.wikipedia.org/wiki/Wikipedia:Categories,
_lists,_and_navigation_templates for a comparison (accessed December
2012).

147

http://en.wikipedia.org/wiki/Wikipedia:Categories,_lists,_and_navigation_templates
http://en.wikipedia.org/wiki/Wikipedia:Categories,_lists,_and_navigation_templates

Improving Creation, Maintenance and Contribution in Wikis with DSLs

4.11 Conclusions

This chapter strives to ease wiki refactoring by using mind maps as a
graphical representation of the wiki structure, and mind map manipulations
as a way to express refactoring. In so doing, this work (i) defines the
semantics of common refactoring operations based on Wikipedia best
practices, (ii) advocates for the use of mind maps as a visualization of
wikis, and (iii) introduces WikiWhirl, a DSL for wiki refactoring built on
top of FreeMind. From this perspective, WikiWhirl offers a refactoring-
minded alternative to traditional editing-minded front-ends as available in
current wiki engines. The wiki’s corpus is depicted as a FreeMind map,
and map manipulations are interpreted as refactoring operations that end
up being consolidated in the wiki database. First evaluations suggest that
users find intuitive and less demanding to conduct wiki refactoring in terms
of node rearrangement in a mind map.

According to the activity theory, the form of group collaboration
may be influenced if certain affordances are promoted. WikiWhirl
enhances refactoring affordances for wiki engines. It rests to be seen
how collaborative refactoring is influenced by the availability of tools that
reduce the skills required to participate. Similar to the introduction of
affordable editing mechanisms (one of the hallmarks of wikis), improving
refactoring affordances facilitates participation but also “the editing
wars”. Future work includes the investigation of how the structure and
collaboration of wikis is affected by the empowerment of the layman with
such sophisticated tools.

Parts of this chapter have already been published:

• Gorka Puente, Oscar Díaz, Maider Azanza “Refactoring
Affordances in Corporate Wikis: A Case for the Use of Mind
Maps”, In Enterprise Information Systems journal, 2013. JCR,
Impact factor 3.684. Under review.

• Gorka Puente, Oscar Díaz, “Wiki Refactoring as Mind Map

148

Chapter 4. Wiki Refactoring through Mind Map Manipulation

Reshaping”. In 24th International Conference on Advanced

Information Systems Engineering (CAiSE’12), Gdansk, Poland,
2012. Acceptance rate 14%.

• Oscar Díaz, Gorka Puente, Cristóbal Arellano, “Wiki Refactoring:
an Assisted Approach Based on Ballots”. In 7th International

Symposium on Wikis and Open Collaboration (WikiSym’11),
Mountain View, California, USA, 2011. Acceptance rate 42%.

149

Chapter 5

Wiki Customization through
Web Augmentation Techniques1

“The greatest enemy of knowledge is not ignorance, it is the illusion of

knowledge.”

– Stephen Hawking.

5.1 Overview

Wikipedia is a successful example of collaborative knowledge
construction. This can be synergistically complemented with personal

knowledge construction whereby individuals are supported in their
sharing, experimenting and building of information in a more private
setting, without the scrutiny of the whole community. Ideally, both
approaches should be seamlessly integrated so that wiki users (e.g.,
Wikipedia’s users) can easily transit from the public sphere to the private
sphere, and vice versa. To this end, this chapter introduces WikiLayer,
a plugin for Firefox that extends wiki rendering with augmentation

1Parts of this chapter have been previously presented [DAP12].

151

Improving Creation, Maintenance and Contribution in Wikis with DSLs

capabilities. WikiLayer permits wiki users to locally supplement articles
with their own content (i.e., a layer). Layering additional content is
achieved locally by seamlessly interspersing wiki content with the
custom content. WikiLayer is driven by three main wiki characteristics:
affordability, if users know how to edit, users know how to layer;
modularity, evolving layers can be reduced or enlarged at users’ wish; and
shareability, layers can be shared in confidence through the wikipedian’s
social network (e.g., Facebook). This chapter motivates scenarios where
readers, contributors and editors can apply WikiLayer as an augmentation
mechanism.

WikiLayer is contextualized for Wikipedia for a better understanding
of the cases samples, but it is also valid for any MediaWiki powered
wiki. In fact, WikiLayer could perfectly fit with an initiative of the
Wikimedia Foundation, the Public Policy Initiative [Wik11], and use
web augmentation as an annotation way. The purpose of the initiative
is to increase the use of Wikipedia as a teaching tool in University
classrooms. Indeed, participants on the Wikimedia Foundation Initiative
seek to encourage future Wikipedia contribution through exposure in the
classroom [LOO+12]. But just reading does not seem to be enough.
Understood as a learning activity, reading is commonly associated with
taking notes. Different studies highlight the importance of annotation
as a way to fix, relate and structure knowledge as you read [HWS07].
Annotation through web augmentation may promote ’deep reading’, i.e.,
thinking, contrasting and contextualizing what you read for you own
purposes.

The WikiLayer examples used through this chapter are available for
download at http://webaugmentation.org/wikilayer.xpi
and http://tinyurl.com/wikilayersamples.

This chapter starts motivating with some scenarios of use (Section 5.2)
for later giving rise to the introduction of WikiLayer as a way to define
layers (Section 5.3). Before the related work (Section 5.5) and conclusions
(Section 5.6), WikiLayer is framed within Wikipedia (Section 5.4).

152

http://webaugmentation.org/wikilayer.xpi
http://tinyurl.com/wikilayersamples

Chapter 5. Wiki Customization through Web Augmentation Techniques

5.2 Motivating Scenarios

Wikipedia augmentation offers a backdoor for wiki users to customize
Wikipedia articles with their own content. This augmented content
(referred to as layer2) very much depends on their goals as readers,
contributors or editors. This section introduces distinct scenarios for
each of these roles. For comprehension purposes, this chapter provides
some snippets of WikiLayer as it goes along. The full expressiveness of
WikiLayer is addressed in the next sections.

Readers: layers as entryways to editing. Reading has been
characterized as “a gateway activity through which newcomers learn about

Wikipedia” [AC10]. Reading Wikipedia spurs on community engagement,
and it is the entry to more involved activities such as editing. However, the
gap between reading and editing could be too large for some wikipedians.
Layering provides a middle pier in this transition by facilitating a protected
way to practice editing in private. But layering is not editing for the sake
of editing. Layering is editing with a purpose: extending/tailoring the
coverage of a topic (i.e., an article). For instance, users can add their own
local references for the article XML in Wikipedia, indicating whether a
book is in the University library. Figure 5.1 depicts the XML article before
and after being augmented with the following wikinote:

LayerOnArticle("XML").

AfterSection("References").

EmbedNote("== My own references ==\n*

[http://www.amazon.com/ dp/0201771861 Processing XML

with Java] Nice book. Also available at the University

Library!")

Using wikitext, this wikinote introduces a new section after the section
References of the article XML. From now on, when navigating to the XML
article, this reference will be seamlessly introduced on the fly (see Figure

2A layer is composed by one or more wikinotes.

153

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Figure 5.1: The XML article before (top) and after (bottom) being
subject to WikiLayer.

5.1). Other scenarios might be applicable to a set of articles characterized
by their membership to a category. For instance, users might augment
articles pertaining to the category XML with a link to Delicious3 with
information about who has bookmarked this article. Thus, readers can
readily obtain a first feeling about the popularity of the article. The
wikinote follows:

LayerOnArticle("Category:XML").

BeforeSection("1").
3www.delicious.com (accessed December 2012).

154

www.delicious.com

Chapter 5. Wiki Customization through Web Augmentation Techniques

EmbedNote("See who has found this article

interesting enough to be bookmarked in Delicious.

[http://delicious.com/url/?url= en.wikipedia.org/wiki/$article

CLICK HERE].")

This wikinote is applied to any article pertaining to the category XML. At
runtime, the topic (i.e., title) of the current article (e.g., “XML Schema”)
is kept in the variable $article. Similar variables are available to refer to
the current section (i.e., $section), ip (i.e., $ip), and other items.

Contributors: layers as enablers of a perspective of co-existence.
Collaborative knowledge building is basically a spiralled process where
knowledge first emerges at individual context and then is socialized
[NT95]. This process involves externalization, publication, internalization
and reaction. Most wikis only support the knowledge socialization,
but it is fundamental to support personal knowledge building too.
Web Augmentation offers a way for personal knowledge management
structured along Wikipedia topics. This personal perspective might not
be compatible with Wikipedia’s neutral point of view (NPOV) policy
[NPO]. Such neutrality leads to lean articles that focus on the bare essence
of the topic at hand. That is, articles are devoid of any contextualized
bias. Contextualization is not bad but addresses the topic from a specific
perspective. For instance, the XML article restricts itself to introducing the
rationales, history, criticism and core notions of this topic. This is sufficient
for readers looking for an introduction to XML. However, consider
a lecturer who refers to Wikipedia for those topics addressed in the
classroom. Besides the bare description of the topic as found in Wikipedia,
the lecturer can be interested in providing additional teaching material
(e.g., figures, commented bibliography, additional resources, hot trends,
debates, etc.) along the structure and support offered by the Wikipedia
article. Directly editing the article might be inconvenient (since adding
teaching material is not the aim of Wikipedia) or just too intimidating.
Augmentation permits a non-intrusive, self-consumption approach to
extend Wikipedia. In some cases, these different perspectives might

155

Improving Creation, Maintenance and Contribution in Wikis with DSLs

already co-exist in the wikisphere. For instance, the topic “Barcelona”
is covered in both Wikipedia (providing factual information about the
population, history, etc. of this city) and Wikitravel (facilitating travellers’
opinions about where to stay, eat, visit, etc.). As another example,
Wikipedia is being referred as a source of “crowd-sourced” perspective
that might not match academic standards. This grounds initiatives such
as http://citizendium.org where contribution might be limited
to experts or gently guided by experts. In this setting, users can layer
the XML Wikipedia article with some sections obtained from other
citizendium:

LayerOnArticle("XML").

AfterSection("Characters and escaping").

EmbedNote(extractSection("en.citizendium.org /wiki/XML",

"XML Specification and Origin"))

Editors: layers as productivity tools. Editors manage and track content
edition. Hence, the focus is not on article pages but on history pages
(i.e., the revision history of each wiki page). The history page contains
a list of the page’s previous revisions, including the date and time of
each edit, the username or IP address of the user who made it, and
their edit summary. This information might be insufficient for decision
taking. Rather, it only provides the main dimensions (i.e., when, who and
what) for assessing editing, which might need to be supplemented with
additional insights. Vandalism detection is a case in point. Recent studies
[JML11, AdAMV+11] suggest the use of metadata (e.g., revision comment
length, local time-of-day, etc.) or reputation (e.g., user reputation, country
reputation, trust histogram, etc.), as valuable sources to detect vandalism.
Some of these data might already be available on the Web: reputation data
(a.k.a. Karma) can be obtained from http://wpcvn.com, geolocation
through IP address is available at http://www.maxmind.com and
so forth. Despite being online, navigating back and forth from the
history page to these sites can be cumbersome and time consuming, if

156

http://citizendium.org
http://wpcvn.com
http://www.maxmind.com

Chapter 5. Wiki Customization through Web Augmentation Techniques

conducted routinely. Augmentation can help here. Editors can define a
layer that dynamically augments the history pages at hand with additional
information extracted from these places. Back to the XML example, we
are now interesting in tracking the history of edits but augmented with
the Karma, should this data be significant for our analysis. Figure 5.2
compares the “real” history page and the page augmented by the following
wikinote:

LayerOnHistory("XML").

AfterUser().

EmbedNote(extractFromPage("http://wpcvn.com/s/karma?username=

$user"))

This wikinote extends the user description in the XML history page with
her Karma as obtained from http://wpcvn.com. In this case, the
direct availability of the Karma improves the productivity of the editor.

Next section introduces WikiLayer, as a way to define layers within
wikis. WikiLayer for Firefox and the wikinote samples are available for
download at http://webaugmentation.org/wikilayer.xpi
and http://tinyurl.com/wikilayersamples, respectively.
WikiLayer has been tested against Mozilla Firefox 11.0, and the following
wikis: Wikipedia, Wiktionary, Wikinews, Wikibooks, Wikiquote,
Wikisource, Wikiversity, Wikispecies, Wikitravel and Citizendium.

5.3 WikiLayer: Layers on Wikis

Web Augmentation is the act of superimposing additional directives on
top of existing Web pages at run time [Bou99]. This approach is non-
intrusive in the sense that the augmented website is unaware of the
augmentation. This is achieved through JavaScript, using special weavers
which permit a locally provided script to make on-the-fly changes to
the currently loaded Web page. Weavers are available for Firefox (e.g.,

157

http://wpcvn.com
http://webaugmentation.org/wikilayer.xpi
http://tinyurl.com/wikilayersamples

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Figure 5.2: A history page being augmented with information about
Karma from http://wpcvn.com.

Greasemonkey), Internet Explorer (e.g., IE7Pro or Turnabout), Safari

(e.g., SIMBL + GreaseKit), and natively supported in Opera and Google

158

http://wpcvn.com

Chapter 5. Wiki Customization through Web Augmentation Techniques

Chrome. Unfortunately, JavaScript meets none of our requirements.
Scripts are neither affordable (i.e., JavaScript is a convoluted programming
language, ignored by most of wiki users), nor modular (i.e., scripts tend to
be a bulk of code, difficult to enlarge and reduce along the wiki article
evolution) and nor shareable (i.e., scripts tend to be poorly documented).
The bottom line is that only dedicated programmers are disposed to
produce scripts, and only courageous consumers are willing to install them.
We strive to depart from this situation, heading to a vision of Wikipedia
augmentation as a Web2.0 activity, i.e., end-user oriented.

In this setting, the domain is Wikipedia augmentation and the target
audience is Wikipedia users. That is, expected users are familiar with
notions like article, category, edit, history, infobox or wikitext. In this way,
looking at distinct scenarios of Wikipedia augmentation, and abstracting
from them, we distinguish the main features of WikiLayer. Next section
introduces those user visible characteristics to be tackled during Wikipedia
augmentation as features of WikiLayer.

5.3.1 Features of Wiki Customization

Insights gained by looking at previous scenarios should now be made
precise in terms of a feature diagram. Figure 5.3 shows such diagram
for WikiLayer. The diagram states that a WikiLayer expression (a.k.a.
wikinotes, the building blocks of layers) frames an augmentation within
a scope. A scope holds pointcuts that pinpoint where the article content
can be locally supplemented with a note. More specifically:

• Scope. Wikipedia comprises a huge bulk of pages. First, we should
determine the focus of the augmentation effort. This includes the
type of page (i.e., article, category or history) and the topic (i.e., a
specific page like the article about XML).

• Pointcut. The scope delimits the pages subject to augmentation.
However, a page might offer different injection points. These points

159

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Figure 5.3: Feature Diagram: characterizing wiki customization.

are denoted after the structural elements found in a page (referred
to as “items”). For articles, items include Sections, References,
ExternalLinks, etc. For history pages, items include IP, User,
Contribution, etc. That is, items depend on the kind of page. In
addition, a page is not a set but a sequence of items. An article is
a sequence of sections. A history is a sequence of edition traces.
Hence, a pointcut is a pair (position, item), for instance (Before,
"Characters and escaping" section).

• Note. A note is basically wikitext. The source of a note can be static
(i.e., directly provided by the user, adhoc wikitext) or dynamic (i.e.,
the outcome of a function). Functions permit notes to be extracted
from web sites in general, or wikisites in particular. Notes also
include both a rendering strategy and a triggering strategy. The
former indicates whether the note is to be embedded or posted with
regard to the raw page. Embedding implies the reader perceives no
difference between the raw content and the augmented content. By
contrast, posting makes augmented content visible by visualizing the
note as a post on top of the wiki page. As for the triggering strategy,
it refers to when the note is to be shown up. Matching the scope

160

Chapter 5. Wiki Customization through Web Augmentation Techniques

might directly lead to showing up the note (i.e., immediate strategy).
However, this might entail cluttered pages if the page is heavily
augmented. In this case, it might be preferable the augmentation
to take place on demand (i.e., on-demand strategy), whereby a user
action is required for the note to surface (e.g., clicking a button,
passing the mouse over a certain page region, etc.).

Next subsection provides details about the description of WikiLayer
expressions as layers.

5.3.2 Understanding WikiLayer Expressions

This section tackles the description of how to conceive WikiLayer
expressions (i.e., wikinotes) through examples.

Setting the scope. First, users should indicate the kind of pages they are
going to act upon: LayerOnArticle(), LayerOnHistory(), etc. Next, users
focus on the specific pages to be subject to augmentation:

1. LayerOnArticle("XML")

2. LayerOnArticle(["XML","XPath"])

3. LayerOnArticle("Category:XML")

This set can be described either extensionally by referring to the XML
article (examples 1 and 2) or intentionally through category membership
(example 3 acts upon all articles that belong to the XML category).

Setting the note. Next, users focus on the new material to be added,
i.e., the note. WikiLayer supports three options: (i) directly provide the
wikitext, (ii) extract the note from other wiki pages, or (iii) extract the note
from other web pages. Examples follow:

1. "===Java Architecture for XML binding===\n This allows Java

developers to map Java classes to XML representations. A nice

tutorial can be found [http://jaxb.dev.java.net/tutorial/ here]")

161

Improving Creation, Maintenance and Contribution in Wikis with DSLs

2. extractSection("en.citizendium.org/wiki/XML", "XML Specification

and Origin")

3. extractFromPage("www.vogella.de/articles /JAXB/article.html")

Example 1 explicitly provides the note as a piece of wikitext. If users know
how to edit an article, then they know how to write a note. By contrast,
examples 2 and 3 take the note from the websphere. Users do not provide
the note but pinpoint to where the note can be obtained. WikiLayer uses a
transclusion-like4 approach whereby the inclusion is performed on demand
at the time the wiki article is loaded. The location is described in terms
of the page’s URL and a region within this page. For wiki pages, these
regions stand for items (e.g., Section, Id, Timestamp, TotalLength, etc.).
WikiLayer provides namesake functions to extract the items from wikis
(e.g., extractSection(), extractUser(), etc.). Example 2 extracts the section
"XML Specification and Origin" from the XML article at citizendium.

If the source is not a wiki (better said, a MediaWiki powered wiki) then,
the desired region should be manually pinpointed by the user. Here, it is
not clear which kind of “items” should be introduced to play the role of
references for note extraction. Due to the lack of such items, XPath is used
to pinpoint the HTML region to extract. But forcing the user to use raw
XPath would hinder WikiLayer openness, since most wiki users probably
ignore XPath. Therefore, we resort to programming-by-example. The first
time a wikinote with an extractFromPage() function is enacted, the engine
automatically navigates to this URL and intersperses a grid-like structure
on top of the current DOM tree5 (Figure 5.4). As the user moves the
cursor around the screen, the DOM node under the current cursor location
is highlighted. By clicking, the user makes up his mind about the fragment
to be extracted, and the wikinote becomes bound to the so-identified XPath
(Figure 5.5). Subsequent enactments of this wikinote will directly extract
this external region.

4Transclusion is the inclusion of the content of a document into another by reference.
5The runtime tree-like structure of HTML pages.

162

Chapter 5. Wiki Customization through Web Augmentation Techniques

Figure 5.4: WikiLayer navigates to the URL indicated in the
extractFromPage(), and allows to select a fragment of that web site. The
fragment is transformed in its XPath counterpart. In this case, the graph
(highlighted by an orange box) is translated by WikiLayer to the XPath
.//td[1]/img (Figure 5.5 down).

Figure 5.5: WikiLayer expression before (top) and after (bottom) the
selection of the fragment in Figure 5.4.

163

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Setting the injection location. This addresses in-context presentation
of wikinotes, i.e., how are integrated in the original wiki content. This
implies to consider the rendering strategy and the triggering strategy. Some
examples follow:

1. BeforeSection("XML as data type").EmbedNote(...)

2. BeforeSection("XML as data type").

OnClickingButton().PostNote(...)

The rendering strategy has a two-fold implication. First, declaring the
pointcut in the form “PositionItem()” where Position can be Before,

After or Upon, and Item can be any item type (e.g., BeforeSection(),
AfterTimestamp(), UponTotalLength()). Second, deciding whether the note
is to be showed up on demand. Example 2 illustrates this option: the clause
OnClickingButton() will cause a button to be rendered and its clicking
is necessary for the note to show up. As for the triggering strategy, it
determines whether the note is to be embedded (EmbedNote()) or posted
(PostNote()).

Putting the pieces together. The expression should be easy to read and
understand. At this regard, setting the context right away is most important.
In this case, the context is partially defined by the current page, i.e., the
scope. Hence, WikiLayer starts with the scope, next the pointcuts within
the scope, and finally, the note. Therefore, a wikinote looks like follows:

LayerOnArticle("XML").

BeforeSection("XML as data type"). OnClickingButton().

EmbedNote(extractSection("en.citizendium.org /wiki/XML",

"XML Specification and Origin")).

164

Chapter 5. Wiki Customization through Web Augmentation Techniques

5.4 Framing WikiLayer into Wikipedia

As previously mentioned, WikiLayer is JavaScript and it should be kept
aside from wiki users. However, hiding JavaScript from wiki users’ is not
enough. We should strive to frame WikiLayer in its context of use, i.e.,
wikis. Otherwise, there is the risk that wiki users to be reluctant to skip
to another platform/editor to write or maintain their layers. It should look
like WikiLayer is part of the users’ wiki (e.g., Wikipedia). Our aim is to
make layer editing an impulsive action, so that editing can occur at the time
and place where users consult the wiki (i.e., in the browser). Back to our
sample, the user reads the XML article, she comes up with a new reference,
and right at that moment, she has the momentum to improve the layer.
Thus, the aim is to drive this impulse at the time it emerges. This calls for a
seamless integration of WikiLayer within the wiki (specifically, Wikipedia)
front-end, i.e. Web-augmenting Wikipedia with WikiLayer functionality.
Such functionality includes layer edition, verification, maintenance and
sharing. Next paragraphs look at how these operations can be conducted
for Wikipedia.

Edition. So far, Wikipedia supports two modes for article interaction:
describing an article, and talking about an article. WikiLayer envisages
annotations as a third mode: besides describing and talking, articles can
also be subject to annotation. Wikipedia uses tabs to reflect modes: the
Article tab and the Talk tab. Accordingly, WikiLayer introduces a third
tab: the WikiLayer tab (see Figure 5.6). By clicking on this tab, the
Read and the Edit tabs become online editors for the layer. Click the
Edit tab. Now, users are ready to provide their wikinotes. Akin to wiki
editing practices, wikinotes are specified using a template-like format.
Each of the clauses is declared as a template parameter. Figure 5.6
illustrates the case of a lecturer who augments the XML article for teaching
purposes. This includes: (i) a new section about JAXB obtained from
the Wikipedia itself; (ii) a new graph about the evolution of XML as a
keyword found in online job posting as provided by www.indeed.com

165

www.indeed.com

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Figure 5.6: The tab Edit in the “WikiLayer” mode. Wikinotes are specified
using a template while layer verification is conducted on showing preview.

(Figure 5.7); (iii) an extension of the References section with commented
bibliographical entries (in terms of wikitext); and (iv) an extension to
the “XML Schema” subsection with links to a tutorial about this topic
at www.zvon.org. This wikinote can be downloaded from http:

//tinyurl.com/wikilayersamples2.
Verification. Akin to wiki editing practices, before saving a layer, it is

convenient to obtain a preview. Here, this mechanism is used to verify the
syntactic correctness of wikinotes. Any syntactical error will be spotted
and reported in the preview. If users directly go to Save without preview,

166

www.zvon.org
http://tinyurl.com/wikilayersamples2
http://tinyurl.com/wikilayersamples2

Chapter 5. Wiki Customization through Web Augmentation Techniques

Figure 5.7: XML article enhanced with a graph from www.indeed.com.

the verification is still conducted but just a brief error message is issued,
should there be any problem. Once wikinotes are syntactically correct, the
engine stores then in the browser. This entails that the next time the page at
hand is loaded, the augmentation will take place. If the wikinote extracts
content from websites other than wikis, the first enactment will require to
graphical set the XPath that recovers the desired HTML fragment (e.g., the
job-trend graph at http://indeed.com in Figure 5.7). From then on,
WikiLayer will seamlessly intersperse the local content (i.e., the wikinote)
with the remote code (i.e., the original article).

Maintenance. Once defined, layers are prone to change. Rationales
include: (i) layers are rooted in a moving target, Wikipedia pages (e.g., new

167

www.indeed.com
http://indeed.com

Improving Creation, Maintenance and Contribution in Wikis with DSLs

sections, paragraphs, infobox can be added or removed, and this will likely
percolate to their layer counterparts, e.g., if users refer to sections based
on their numbers then, introducing a new section will no longer properly
locate their layer); (ii) augmentation is a process. As users discover new
Web resources (e.g., book references, tutorials, etc.), users might like to
integrate them into a layer. WikiLayer is designed with this dynamicity on
mind: wikinotes can be added/removed as easy as a paragraph of a wiki
article. While on the “WikiLayer” mode, users can see which wikinotes
operate on this article by clicking the Read tab. Figure 5.8 shows the output
for our sample problem. The look mimics wiki pages but they are not wiki
pages. From then on, users can add/remove wikinotes at their wish, since
the layer is generated on the fly.

Sharing. Annotation alone might not be enough. Sharing might
increase not only the quality of layers but also the wikipedian’s confidence
to consolidate the layer as part of the original article. Hence, sharing
might play a pushing role in this transition from reading to editing. By
its very own nature and purpose, layer sharing departs from Wikipedia
article sharing. Rather than a central repository, we regard social networks
as more appropriate for layer sharing.

Being plain text, layers can be easily emailed. But text is no longer
the most convenient way of sharing in the Web: URL bookmarks are.
WikiLayer turns layers into URLs so that users can easily share them
through Twitter or Facebook. Figure 5.9 shows this utility in action. The
rendering of layer is now decorated with the icons of these social networks.
On clicking the Facebook icon, the wikipedian is publishing his layer URL
into his wall. Likewise, pushing the Twitter icon creates a tweet that
includes the layer’s URL. By clicking this URL, followers download the
layer right away. No need to go to a repository. Of course, this requires
followers to have WikiLayer installed.

168

Chapter 5. Wiki Customization through Web Augmentation Techniques

Figure 5.8: The tab Read in the “WikiLayer” mode. “Layer pages” kept
the wiki look, although there are dynamically generated from scripts.

5.5 Related Work

This chapter can be framed within the area of Personal Knowledge
Management in wikis. Along the knowledge creation spiral steps [NT95],
traditional wikis support authoring and collaboration to a high extent,
while semantic wikis strive to enhance knowledge reuse, finding and
reminding existing knowledge through semantic annotations [OVBD06].
In addition, increasing attention is being drawn to the need of users to
manage and combine both shared and personal knowledge. Users require
means for creating, combining and adapting information in an isolated
and guesstimated way before eventually sharing the outcome with their

169

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Figure 5.9: The Read tab in the “WikiLayer” mode. Clicking the
Facebook/Twitter icon pops up a window for editing a message. The
message includes a tiny URL generated, which represents the layer. By
clicking on this URL, receivers can install the layer right away.

mates for further refinement. At this respect, approaches can be arranged
along a continuum from completely detached wikis (a.k.a. personal wikis),
passing from P2P approaches (where personal content can be shared in a
pair-like way and not central server exists) to versioning-like architectures
where users can start by checking out from a traditional wiki, create their
own branch and then merge the content back. We compare these different
approaches along a set of dimension (see Table 5.1): the contribution

170

Chapter 5. Wiki Customization through Web Augmentation Techniques

Table 5.1: Personal Knowledge Management: wiki-based approaches.
Contribution Scope Architectural

type style
WikidPad wiki intra-wiki standalone
P-Swooki semantic intra-wiki P2P

annotation
Hatta wiki intra-wiki client-server

Federated Wiki wiki/article inter-wiki P2P
WikiLayer item inter-wiki standalone

type, what is the user contribution: a whole wiki, an article, an item, a
semantic annotation, etc.; the scope, whether the reach is limited to a single
wiki or expand across different wikis; and finally, the architectural style

(i.e., standalone, client/server or P2P). The goal is not only to provide
an exhaustive list of endeavours but outline the main differences with
WikiLayer. For completeness sake, the comparison also includes Web
annotation tools.

Web Annotation Tools. Being a Web applications, wikis can benefit
from Web annotation tools such as Diigo or A.nnotate. Nothing wrong with
it. However, the premise is that wikis (unlike other websites) should look at
annotation as a mean to achieve their very own goals: reading and editing
articles. While annotating a University website is not directly related
with the University goals (i.e., educating), wikis are all about engaging
the crowd in article contribution. From this perspective, annotation is no
longer an ancillary activity but a main mean to fulfil wiki’s ends. By
using general-purpose Web annotation tools, opportunities brought by a
wiki-specific annotation tool are missed: same rendering experience (i.e.,
annotation as an article mode), in-context presentation (i.e., annotations
intermingled with original content), or a ’wiki-ish’ annotation description
(i.e., use of wikitext or transclusion mechanisms). In brief, making
annotation a natural gesture for wiki users. WikiLayer is an attempt in
that direction.

Personal Wikis. A personal wiki is like a traditional wiki but with a

171

Improving Creation, Maintenance and Contribution in Wikis with DSLs

single user. WikidPad6 is a case in point7. WikidPad defines itself as “a

Wiki-like notebook for storing your thoughts, ideas, todo lists, contacts,

or anything else you can think of to write down. WikidPad is like an

IDE for your thoughts”. The main difference with WikiLayer stems from
the starting point: WikiLayer pivots around an existing wiki. Unlike
WikidPad, layers cannot be created in a vacuum but they are anchored
in existing articles. Layers look more like annotations.

Semantic Wikis. A semantic wiki allows users to make formal
descriptions of resources by annotating the pages that represent those
resources. Where a regular wiki enables users to describe resources in
natural language, a semantic wiki enables users to additionally describe
resources in a formal language. This facilitates the structuring (hence,
querying) and potential reusing of the wiki content. The P-Swooki

effort complements semantic wikis by introducing the personal perspective
[TSMDM09]: personal semantic annotations are associated to the wiki
page and they can only be accessed by the owner user. In this
way, personal annotations support the individual understanding in the
collaborative knowledge building process while providing personalized
knowledge retrieving, structuring and navigation. Users keep their
personal annotations local (i.e., the article tags) which can eventually be
blended with the publicly visible tags of the semantic wiki. WikiLayer
shares the same spirit: ability to annotate existing wiki material. The
difference stems from the subject of contribution: semantic annotations
(i.e., tags) in P-Swooki versus items (e.g., sections) in WikiLayer.
Moreover, WikiLayer favours a mashup approach where material from
different wikis can be easily mixed together whereas P-Swooki is intra-
wiki. And the other side of the coin, WikiLayer does not support automatic
merging of layers into wiki articles whereas P-Swooki does.

Wiki Versioning. These tools are inspired by software versioning and

6http://wikidpad.sourceforge.net/ (accessed December 2012).
7For a list, refer to http://c2.com/cgi/wiki?PersonalWiki (accessed

December 2012).

172

http://wikidpad.sourceforge.net/
http://c2.com/cgi/wiki?PersonalWiki

Chapter 5. Wiki Customization through Web Augmentation Techniques

revision control utilities like SVN or Git. Generally, the engine can be
installed locally, and periodically (normally on demand) synchronized
with the server. Moreover, other users can also have their own local
installations, which are also centrally synchronized. Normally, the process
starts by creating a local clone (a.k.a. a check out), which includes the
page history. Examples include Hatta8, or Firestarter9 for Confluence10.
Firestarter is described as “a wiki on a USB drive”. The envisaged
scenarios include working on the wiki while offline. Wiki versioning
shares with WikiLayer the fact of starting with existing content. However,
the ending is not necessarily a blend with the ground article. Rather, layers
are prone to become “personal views” over existing article by tailoring it to
some new context (e.g., teaching). This resembles “forking” as supported
by versioning systems whereby a new project is initiated out of a base one.
From this perspective, WikiLayer can be regarded as a lightweight wiki-
oriented approach to article versioning, although no automatic merging
is supported. Notice the difference in granularity: WikiLayer versions
articles while Hatta-like applications version the wiki as a whole. In
addition, versioning systems like Git focus on a code unit, which can next
be forked if appropriate, but the coordination model is that of branching
from a single core. Moving away from this centralized approach, we reach
to federated wikis.

Federated Wikis. At the moment, wiki content is kept within the walls
of the wiki engine. Export and import utilities exist, but there is no feature
specifically designed to share content across wiki repositories. Pioneered
by Ward Cunningham [Cun11], federated wikis strive to open wiki content
in a controlled way. Federation has a two-fold implication. First, wikis
stay in control of the inflow and outflow streams of wiki content. Second,
wikis are engineered for collaboration. For instance, Cunningham’s engine
rests on the existence of a common JSON representation for articles. It

8http://hatta-wiki.org (accessed December 2012).
9www.appfire.com/enterprise/firestarter (accessed December

2012).
10www.atlassian.com/software/confluence (accessed December 2012).

173

http://hatta-wiki.org
www.appfire.com/enterprise/firestarter
www.atlassian.com/software/confluence

Improving Creation, Maintenance and Contribution in Wikis with DSLs

does not matter how engines obtain this JSON as long as they follow
this common format. This JSON format becomes the lingua franca for
exchanging content from different wikis. In addition, articles keep a log,
i.e., a trace of the different operations conducted over the article at hand.
These operations include “edit”, “add”, “remove” and the like. It is also
possible to “fork” an article. This clones an article to your wiki. From then
on, the original article and the clone have different lifecycles, although
users can keep an eye on the clone and eventually integrate some of its
content. Federated wikis are certainly a step ahead in knowledge sharing.
WikiLayer complements this view by adding the personal view on top of
it. Edition and sharing are conducted within a personal realm: sharing
through friends in Facebook or followers in Twitter, and edition through a
transparent local repository.

5.6 Conclusions

This chapter spur on the use of WikiLayer as an augmentation facility
targeted to wikipedians, although equally valid for users of any MediaWiki
powered wiki. WikiLayer provides a lightweight, seamless, client-based
approach to supplement existing wiki articles with additional content,
potentially brought from other websites (wikis or not). The approach
has been carefully designed to engage wiki users: layer design is along
wiki concepts (e.g., section, wikitext), layer syntax resorts to wiki
templates, and layer management is achieved through wiki-like templates.
This endeavour is framed within the efforts to blend social knowledge
management and personal knowledge management. From this perspective,
WikiLayer introduces the personal perspective in wikis.

However, some premises need yet to be demonstrated. Thus, the next
follow-on is to conduct validation experiments to check the following
hypothesis: (i) readers using layers are more inclined to become editors,
(ii) wikipedians look at layer-enhanced wikis as appropriate hubs to collect
web-based material, and (iii) layer-based editing surveillance leads to more

174

Chapter 5. Wiki Customization through Web Augmentation Techniques

frequent monitoring and hence play the advantage of the quality of the
monitored articles.

Parts of this chapter have already been published:

• Oscar Díaz, Cristobal Arellano, Gorka Puente, “Wikipedia
Customization through Web Augmentation Techniques”. In
8th International Symposium on Wikis and Open Collaboration

(WikiSym’12), Linz, Austria, 2012. Acceptance rate 55%.

175

Chapter 6

Conclusions

“Real knowledge is to know the extent of one’s ignorance.”

– Confucius

6.1 Overview

Corporate wikis have become commonplace for collaborative knowledge
formation and sharing. However, the very same wiki nature hinders its
success if the main wiki design principles [Cun06] are not kept: initial
wiki deployment should be simple; the wiki organic growth should not
impede wiki maintenance and management; and individuals should be
able to share their personal knowledge. This dissertation undertakes the
challenge of providing support for users in following these principles.

This chapter reviews the main results of this work, assesses its
limitations, and suggests work for future research.

6.2 Results

This dissertation developed the content of the research into four main
chapters, whose contributions are detailed next:

177

Improving Creation, Maintenance and Contribution in Wikis with DSLs

• Chapter 3 introduces the notion of “Wiki Scaffolding” as a means
for corporate strategies to permeate wiki construction. “Wiki
Scaffolding” is realized as mind mapping to preserve wikis’
openness. The result is WSL, a visual DSL on top of FreeMind.
Thus, non-technical communities are enabled to facilitate the
alignment of the wiki with organizational practices, promoting
management engagement, enhancing the visibility of the wiki’s
practices, and promoting employee participation through direction
setting.

• Chapter 4 paves the road for “Wiki Refactoring” to knowledge
workers (i.e., wiki contributors). This chapter permits the layman
to easily and reliably express refactoring processes. This vision
is realized into WikiWhirl, a DSL built on top of FreeMind.
Hence, wiki users import wikis as mind maps, perform refactoring
operations as reshaping of mind map nodes, and commit these
changes back to the wiki. In addition, WikiWhirl preserves
authorship and readership during the whole process, improving the
productivity, global understandability and automatic following of the
refactoring good practices.

• Chapter 5 encourages wiki users to enhance wikis with their
personal knowledge or perspective. In so doing, this chapter
presents WikiLayer as a customization and private edition tool.
WikiLayer provides a lightweight, seamless, client-based approach
to supplement existing wiki articles with additional content,
potentially brought from other websites (wikis or not). The approach
has been carefully designed to wiki users: layer design is along
wiki concepts (e.g., section, wikitext), layer syntax resorts to wiki
templates, and layer management is achieved through wiki-like
templates.

• Appendix A describes another main contribution: Schemol, a DSL

178

Chapter 6. Conclusions

for harvesting models out of databases. Schemol originated as part
of our endeavours to manipulate wiki content in terms of models
rather than tuples. Indeed, WikiWhirl rests on Schemol for model
extraction. This motivates the inclusion of Schemol as part of
this dissertation. Nevertheless, its scope goes beyond wikis, and
this explains it is not a chapter but an appendix. Specifically, this
appendix focuses on Schemol to extract models from wiki databases
and its special features for Web2.0 specifics.

• The rest of the appendixes are not contributions as such but
supporting material.

6.3 Publications

Parts of the work explained in this thesis have been already presented and
discussed in distinct peer-reviewed forums. The author has co-authored
several publications, which have been backed by different communities:

Information Systems

• Gorka Puente, Oscar Díaz, Maider Azanza “Refactoring
Affordances in Corporate Wikis: A Case for the Use of Mind
Maps”, In Enterprise Information Systems journal, 2013. JCR,
Impact factor 3.684. Under review.

• Oscar Díaz, Gorka Puente. “Wiki Scaffolding: Aligning Wikis
with the Corporate Strategy”. In Information Systems journal, 2012.
JCR, Impact factor 1.595 [DP12].

• Gorka Puente, Oscar Díaz, “Wiki Refactoring as Mind Map
Reshaping”. In 24th International Conference on Advanced

Information Systems Engineering (CAiSE’12), Gdansk, Poland,
2012. Acceptance rate 14% [PD12]

179

Improving Creation, Maintenance and Contribution in Wikis with DSLs

• Oscar Díaz, Gorka Puente. “A DSL for Corporate Wiki
Initialization”. In 23rd International Conference on Advanced

Information Systems Engineering (CAiSE’11), London, UK, 2011.
Acceptance rate 13%. Best paper award [DP11a].

Model Driven Engineering

• Oscar Díaz, Gorka Puente, Javier Luis Cánovas Izquierdo, Jesús
García Molina, “Harvesting Models from Web 2.0 Databases”. In
Software and Systems Modeling journal, (SoSyM), 2011. JCR,
Impact factor 1.533 [DPCIGM11].

Wikis and Open Collaboration

• Oscar Díaz, Cristobal Arellano, Gorka Puente, “Wikipedia
Customization through Web Augmentation Techniques”. In
8th International Symposium on Wikis and Open Collaboration

(WikiSym’12), Linz, Austria, 2012. Acceptance rate 55% [DAP12].

• Oscar Díaz, Gorka Puente, “Wiki Scaffolding: Helping
Organizations to Set Up Wikis”. In 7th International Symposium

on Wikis and Open Collaboration (WikiSym’11), Mountain View,
California, USA, 2011. Acceptance rate 42% [DP11b].

• Oscar Díaz, Gorka Puente, Cristóbal Arellano, “Wiki Refactoring:
an Assisted Approach Based on Ballots”. In 7th International

Symposium on Wikis and Open Collaboration (WikiSym’11),
Mountain View, California, USA, 2011. Acceptance rate 42%
[DPA11].

• Oscar Díaz, Gorka Puente, “Model-Aware Wiki Analysis Tools:
the Case of HistoryFlow”. In 6th International Symposium on

Wikis and Open Collaboration (WikiSym’10), Gdansk, Poland, 2010.
Acceptance rate 39% [DP10].

180

Chapter 6. Conclusions

Others

• Oscar Díaz, Gorka Puente, “Integrando la Wiki dentro de la
Empresa”, In 1st Congreso de Empresa 2.0 y Social Business

(e20biz’12), Sevilla, Spain, 2012.

• Oscar Díaz, Gorka Puente, “Wiki Scaffolding: Framing Wiki
Contributions along the Organization Concerns”, Invited post in the
blog Follow the Crowd. 2011.

• Javier Luis Cánovas Izquierdo, Oscar Díaz, Gorka Puente, Jesús
García Molina, “ScheMoL: Un lenguaje específico del dominio”.
Demo tool. In XVI Jornadas de Ingeniería del Software y Bases

de Datos (JISBD’11), A Coruña, Spain, 2011

• Oscar Díaz, Gorka Puente, “A DSL for Corporate Wiki
Initialization”. Demo Tool. In XVI Jornadas de Ingeniería del

Software y Bases de Datos (JISBD’11), A Coruña, Spain, 2011

• Gorka Puente, “Wiki Reengineering”. Invited talk. University of
Malaga. 2010.

• Gorka Puente, Oscar Díaz, “Wiki Reengineering”. In 3nd Summer

School on Generative and Transformational Techniques in Software

Engineering (GTTSE’09), Braga, Portugal, 2009.

6.4 Research Visits

One of the outstanding benefits of performing a Ph.D. is the possibility of
working together with international and well-regarded professionals, and
above all, learning from them. The author visited two research groups
at the forefront of research in MDE, for one week each time. First, the
ModelUm Research Group at the University of Murcia, headed by Prof.
Jesús García Molina, and later, the Atenea Systems Modeling Group led by

181

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Prof. Antonio Vallecillo. After those experiences, the author performed
a longer research visit from April to June of 2011 to the Intelligent Web

and Information Systems Research Group (IWIS) under the supervision
of Peter Dolog. This dissertation has been certainly influenced for those
research visits, which fostered new and unexpected insights, discussions
and perspectives.

6.5 Assessment and Future Research

The work presented in this dissertation introduces, motivates and proposes
approaches for the different stages a wiki may undergo: wiki initialization,
wiki refactoring and wiki customization. However, an objective
assessment exposes some limitations of this work, which motivates areas
of extension and future improvement.

Wiki Initialization

• Suitability. According to ISO9126 [ISO], suitability is a
functionality characteristic that refers to the appropriateness (to
specification) of the functions of the software. WSL constructs are
based on a literature survey about the use of wikis in companies.
Nonetheless, the use of corporate wikis is at its inception. It is likely
that social conventions and incentives will emerge and evolve to
guide contributors, resolve disputes and help manage wikis. Hence,
WSL constructs will need to be extended, as well as its functionality
characteristics. As an example, consider a new feature that was
not considered at WSL inception but properly suggested during a
WSL demonstration: the automatic introduction of users from the
company directory service (e.g., LDAP).

• Validation. Additional evidences are needed to claim “Wiki
Scaffolding” succeed on better aligning wikis to corporate strategies
as well as on engaging users. At the moment of writing this thesis,

182

Chapter 6. Conclusions

WSL is being deployed in a company to collect evidences and
feedback about the advantages brought by the scaffolding.

• Evolution. The WSL engine raises evolution concerns. WSL
might be affected by (i) changes in MediaWiki (or its extensions),
(ii) changes in the underlying database schema (what impacts on
the MOFScript transformation), and (iii) changes in the FreeMind
metamodel (what impacts on the XSLT transformation). This
challenges WSL maintenance. However, both FreeMind and
MediaWiki are stable platforms backed by thousands of installations.
In addition, wikis can be upgraded once deployed. Remember that
WSL is used just to initialize the wiki. Once the scaffolding is
deployed, users can upgrade the wiki to the newest version. From
this moment on, the wiki will certainly evolve, this was the primary
reason of the following work, “Wiki Refactoring”.

• Scalability. Large wiki projects require large scaffoldings. This can
lead to cluttered WSL maps. Fortunately, FreeMind offers view-
like mechanisms that permit to filter map nodes based on content
and relationships. Another option would be to study the possibility
of initializing wikis in phases, with the consequent reduction in the
mind maps size.

• Learnability. This usability characteristic refers to the learning effort
required to use WSL. This has been a main concern during WSL
design. We strive to make the draw of a “Wiki Scaffolding” as easy
as possible. However, the presumption that is easy to use has still to
be proven by the wiki community.

Wiki Refactoring

• Suitability. As future work, new empirical evidences should
be collected about the usefulness of WikiWhirl, and to extend
WikiWhirl to other wiki engines. Specifically, to Confluence and

183

Improving Creation, Maintenance and Contribution in Wikis with DSLs

DokuWiki, as the most used wiki engines, together with MediaWiki.
Support for DokuWiki would represent an additional challenge since
it stores wiki content in files as opposed to a database.

• Validation. Refactoring is inherent to wikis’ organic growth.
Although traditional refactoring techniques can be interpreted in
wiki terms, the lack of appropriate tests for refactoring safeness
makes the intervention of the users necessary. Based on this
observation, proofs of community acceptance of the refactoring
should be collected, and with that feedback, improve the WikiWhirl
functionality. In addition, more evaluations are needed, specifically,
with a larger group within a corporate setting. Our intuition leads us
to think that productivity and the preservation of the authorship and
readership will be more appreciated in organizations.

• Scalability. In this case, there might be also problems when coping
with large wikis. The average corporate wikis have an estimate
of up to 1,500 pages (i.e., nodes) [SB09]. In these numbers,
FreeMind still works properly, but the human eye starts to have
difficulties to effectively distinguish refactoring opportunities. Even
though, FreeMind has mechanisms that help in this situation (e.g.,
filters, node folding, scripts, etc.), WikiWhirl could provide a feature
to allow working only with partial views of the wiki e.g., only
representing the descendant hierarchy of the XML category.

• Learnability. WikiWhirl has fewer constructors than WSL, which
makes it easier to learn. Nevertheless, it still needs to be configured
with initial database parameters. Although we spent time to reduce
the configuration effort, it still requires further work.

Wiki Customization

• Learnability. WikiLayer design is addressed to wiki users with the
intention of reducing the learning effort. WikiLayer is completely

184

Chapter 6. Conclusions

hidden when in the wiki (e.g., Wikipedia), giving the impression
that the additions are in fact part of the wiki page. In addition, the
creation of a wikinote is not but the same process of editing a wiki
template. However, this premise needs to be validated by the wiki
users to check the real learning effort required.

• Validation. WikiLayer still needs to be complemented with user
validation test and prove the next conjectures: (i) WikiLayer
boosts readers to step further and become editors, (ii) augmented
wikis represent a useful mechanism to collect web-based personal
knowledge for users, and (iii) the use of layers increases the
supervision of articles what leads to regular monitoring, therefore
enhancing their maintenance.

6.6 Conclusions

This dissertation has shown how to cope with the accidental complexity
that lies with wikis: wiki initialization requires technical expertise, wiki
refactoring implies a global view and in-depth wiki knowledge and wiki
customization was not even an option. The different solutions to solve each
challenge have the practical and engineering approach that characterizes
the thesis carried out within Onekin.

Nevertheless, while distinct experiences provide evidences of the
benefits when combining wikis and mind maps, the presented approaches
have still to demonstrate that really pay off for real companies. The author
is eager to assess the presented ideas in the harshest setting: the real
market, where customers will provide the acid test. This will certainly
imply moving from prototypes to products and from users to customers as
the target audience.

185

Appendix A

Harvesting Models from Wiki
Content1

“If people never did silly things, nothing intelligent would ever get done.”

– Ludwig Wittgenstein.

A.1 Overview

Data rather than functionality are the sources of competitive advantage for
Web2.0 applications such as wikis, blogs and social networking websites.
This valuable information might need to be capitalized by third-party
applications or be subject to migration or data analysis. MDE can be used
for these purposes. However, MDE first requires obtaining models from
the wiki/blog/website database (a.k.a. model harvesting).

This chapter introduces Schemol, a DSL tailored for extracting models
out of databases which considers Web2.0 specifics. Schemol and some
examples are available to download at www.onekin.org/schemol.
Specifically, the aim of this apendix is to provide a brief on how Schemol

1Parts of this chapter have been previously presented [DPCIGM11].

187

www.onekin.org/schemol

Improving Creation, Maintenance and Contribution in Wikis with DSLs

extracts models out of wikis (for a complete description of Schemol refer
to [DPCIGM11]). First, it is shown the original motivation for Schemol
(Section A.2). Then an example is used to give a brief on Schemol (Section
A.3). After that, the chapter moves to the application of Schemol to wikis
(Section A.4). Related work (Section A.5) and conclusions (Section A.6)
finish the chapter.

A.2 Web2.0 as Motivation of Schemol

Web2.0 applications revolve around user-provided data [ORe05]. Wikis,
blogs, and tagging sites are the major exponents of this kind of applications
(hereafter referred to as Web2.0 applications). Understanding this data
then becomes key to capitalize and promote further user participation,
hence, helping Web2.0 applications to thrive. In wikis, all related
activities form a specific information space within the organization. This
information space consists of different networks or perspectives [Car03]:
social perspective (i.e., who knows who), knowledge perspective (i.e.,
who knows what), information perspective (i.e., what refers to what), and
temporal perspective (i.e., what was done before). Broadly, these studies
pose a hypothesis based on a model for the Web2.0 application at hand;
next, collect the data for these applications, and finally, analyze the data so-
collected to validate the hypothesis. The model for the Web2.0 application
tends to be a mathematical model (e.g., a graph), which is represented as
a data structure, and the process of populating this data structure tends to
involve tedious programming. Such effort has three main drawbacks:

• First, it makes domain experts (e.g., frequently coming from social
sciences) struggle with involved code, hence deviating efforts from
analyzing the data as such.

• Second, it hinders evolution: the common cycle set hypothesis

/ check data / reset hypothesis commonly involves changes in

188

Chapter A. Harvesting Models from Wiki Content

the model which in turn, implies laboriously changing the data
extracting programs.

• Third, it jeopardizes interoperability. Most analysis and
visualization tools focus on large wikis such as Wikipedia where
efficient handling of large bulk of data is key. This forces a tight
coupling between the tool and the underlying wiki engine (e.g.,
MediaWiki) so that the terms of analysis (e.g., nodes, edges) tend
to be coupled to how these notions are realized in the wiki (e.g.,
wiki pages, wiki users). Hence, it is not uncommon for tools
to bind domain concepts to wiki notions (on an efficiency basis).
For example, if the tool binds nodes to wiki articles then, analysts
are prevented from using that tool to study other wiki concepts
where nodes could have stood for other notions (e.g., wiki users,
revisions, etc.). This is unfortunate, since the very same data could
be studied from different perspectives or using different visualization
metaphors.

We advocate for making analysis tools model aware. That is, tools are
characterized in terms of their abstract analysis models (e.g., a graph
model, a contributor model, a collaboration model). How this analysis
model is then map into wiki implementation terms is left to the users who,
as the domain experts, can better assess which is the right granularity to
conduct the analysis. Unfortunately, this first requires obtaining models
from the wiki database (a.k.a. model harvesting). This can be achieved
through SQL scripts embedded in a program. However, this approach
requires of powerful extractive techniques that permit the obtention of
models out of wikis. Hence, the first question to answer is how wikis store
the content. As already commented in the background, the most common
repositories of wiki content are the relational Database Management
Systems (DBMS) (e.g., MediaWiki uses MySQL or PostgreSQL). In
this regards, there are two main differences between wiki databases and
traditional databases, namely:

189

Improving Creation, Maintenance and Contribution in Wikis with DSLs

1. Wikis do not have their own database schema. That is, all wikis
using the MediaWiki engine are stored using the very same schema.
Of course, this is not the case for traditional database applications
where, let’s say, Oracle, does not restrict the tables of your database.
Therefore, table names offer little help in automating the extractive
process.

2. Data tend to be annotated. Annotation is about attaching additional
information (i.e., metadata) about an existing piece of data.
Unlike “traditional” databases, wiki data are likely to be annotated
with HTML tags, CSS classes, RDFa annotations or templates.
Annotations can provide valuable clues about hidden entities. For
instance, you can use templates to structure the input/rendering of
addresses in your wiki. Address fields (e.g., street, zip code, etc.)
become template parameters. These parameters provide valuable
clues about hidden entities/attributes that might need to be surfaced
when conducting an analysis based on contribution patterns based
on the zip code. The problem is that templates (as well as any other
annotation) are stored together with the data as opaque strings, and
transparent to the DBMS.

By contrast, a DSL can hide these how concerns, leaving the designer
to focus on the what, i.e., the mapping of database schemas to model
classes. With this idea was conceived Schemol. Schemol is a domain-
specific language tailored for extracting models out of databases. Next
section gives a brief on Schemol.

A.3 A Brief on Schemol

Schemol strives to mimic current model-to-model transformation
languages such as ATL [JABK08] or RubyTL [CMT06]. In these
languages, mappings are specified as correspondences between elements
of the source and target metamodels. Likewise, Schemol describes model

190

Chapter A. Harvesting Models from Wiki Content

Figure A.1: Model harvesting in Schemol

harvesting as a mapping between elements of the source database schema,
and elements of the target metamodel.

Figure A.1a shows a simplified example. The database schema
defines the UniversityTable, StudentTable (university_fk_id is foreign
key) and the PhoneTable (student_fk_name is foreign key). The target
metamodel captures universities (University metaclass) and students
(Student metaclass). The transformation has two inputs: (i) the database
itself, and (ii) the Schemol transformation (i.e., a set of transformation
rules).

A transformation rule specifies the mapping between a database table
and a class of the target metamodel. This is achieved through four clauses
(see Figure A.1b):

1. the from part, which specifies the source table together with a
variable (e.g., uTab) that will hold the tuple of this table at the time
the rule is applied,

2. the to part, which specifies the target element metaclass as well as a
variable (e.g., uni) to hold the instance being generated at enactment

191

Improving Creation, Maintenance and Contribution in Wikis with DSLs

time,

3. the filter part (optional), which includes a condition over the source
element. The rule will only be triggered if the condition is satisfied
(e.g., sTab.age > 20 filters students over 20 years old),

4. the mapping part, which contains a set of bindings to set the
attributes of the target element (e.g., uni.id = uTab.id).

A binding establishes the relationship between a source table and a target
metamodel element (i.e., the ‘=’ operator). The left-hand side must be
an attribute of the target element metaclass. The right-hand side can be
a literal value, a query or an expression. The rules in Figure A.1 shows
different scenarios.

Rule ’mapStudent’. The rule states that for each StudentTable tuple, a
Student model element is to be generated. The bindings indicate how the
distinct Student attributes are obtained from table columns. Two scenarios
are possible:

• If the right-hand side of the binding is a literal value then, the value
is directly assigned to the attribute specified in the left-hand side.
Example: “st.name = sTab.name” readily fills the name attribute
from the namesake column.

• If the right-hand side of the binding is a query then, the query is
executed. To this end, Schemol interprets foreign keys as “object
references”, hence, amenable to be navigated through. Navigation
can be forward or backward. This is one of the highlights of
Schemol in comparison with ATL or RubyTL. The expression
“fromId.colName1. colName2” denotes a forward navigation. The
query retrieves the value of colName2, provided colName1 is a
foreign key. Otherwise, an error is raised. By contrast, the
expression “fromId.@tableName” expresses a backward navigation.
This query retrieves those tuples at tableName that refers to the

192

Chapter A. Harvesting Models from Wiki Content

fromId tuple (i.e., they have a foreign key from tableName table to
the table that contains the fromId tuple).

For instance, in the expression “st.phones = sTab.@PhoneTable.

number” the query “sTab.@PhoneTable.number” obtains the set of
phones at PhoneTable for the student held by the sTab variable.
Note that distinct tables can be collapsed into a single class
(e.g., StudentTable and PhoneTable feed the class Student). Here,
recovering the value for phones requires table joins.

Rule ’mapUniversity’. This rule creates a University model element for
each tuple of the UniversityTable table. In this case, a new scenario is
possible:

• The left-hand side attribute is a reference, and the query returns
a tuple set then, the engine returns the model elements of the
tuple counterparts. If not yet created, returned model elements
are built on the fly by triggering the appropriate rules. Example:
“uni.students = uTab.@studentTable”. Here, the binding is not a
mere assignment but Schemol should turn the backward navigation
(i.e., uTab. @studentTable) into its reference counterpart value, so
that students stand for a model association.

The following section shows the specificities of Schemol for wikis.

A.4 Schemol for Wikis

As previously mentioned, Web2.0 databases tend to have annotated
content. Although transparent to the database, annotations might need to
be surfaced in the target metamodel. This section first makes the case
by introducing common approaches to self-descriptive content in Web2.0.
Next, we introduce new functions in the Schemol query language to surface
these annotation-based elements.

193

Improving Creation, Maintenance and Contribution in Wikis with DSLs

As for wikis, semantic wikis have been proposed that “provide the

ability to capture or identify information about the data within pages,

and the relationships between pages, in ways that can be queried or

exported like a database” [SBBK08]. Semantic MediaWiki is an extension
to MediaWiki, which allows for annotating semantic data within wiki
pages [Sem]. Although not so sophisticated as semantic wikis, wiki
templates also illustrate this idea of self-descriptiveness. In some cases,
wiki pages or page sections exhibit some common structure/rendering that
can be explicitly captured through wiki templates. The template defines the
common content that can be parameterized through the so-called template

parameters. A wiki page can then refer to this template, providing the
actual values for the parameters. An example follows:

{{Acknowledgments |project=TIN2008-06507-C02-01/TIN

|PhD student=Gorka Puente}}

A page with this annotation would use the “Acknowledgments” templates,
which is parameterized along “project” and “PhD student” parameters.
What you really get when this page is rendered could look like:

We would like to acknowledge the support of the project

TIN2008-06507-C02-01/TIN. Gorka Puente has a doctoral

grant from the Spanish Ministry of Science & Education.

Commonly cited advantages of wiki templates include: enforcing a
uniform layout, ensuring that all available relevant information is provided,
lack of information is made explicit, and easing comparison of wiki
pages. This list can now be extended to include self-descriptiveness, since
Schemol provides a function to exploit the wiki templates parameters. The
function parameter(templateName, parameterName), which applied to a
string, returns the content of the wiki template parameter parameterName

from the template templateName. This permits model elements (or
attributes of model elements) to be obtained from wiki templates.

194

Chapter A. Harvesting Models from Wiki Content

Case Study: Wiki Articles as Use Cases

Wikis have been proposed to collect software requirements from
stakeholders [Lou06]. Stakeholders become wiki users whereas use cases
(a common mechanism for capturing system requirements) are realized as
wiki articles. In this scenario, Schemol can serve to extract models from
wiki articles that are then liable to be transformed to other models (e.g.,
being enriched with additional information through model composition),
or to code (e.g., using model-to-text transformation languages). The latter
can be useful to help wikis to interoperate with other tools. For instance,
wikis are used to collectively create use cases which are later used to feed
editors using XMI.

It comes as no surprise that wiki templates are available to ensure
that all relevant information is provided. This case study incorporates
the template defined by the W3C at [w3c]. This template (see Figure
A.2) captures use cases in terms of impact (e.g., target audience or
improvement of a series of aspects), tools expected to implement these
recommendations, etc.

Source database schema. A partial view of MediaWiki database
schema is depicted in Figure A.3 (left part). The use case shown in Figure
A.2 is stored as textual content (i.e., a string) of the attribute old_text at the
text table.

Target metamodel. A UseCase metamodel is introduced (Figure A.3,
right part): a Company is an aggregate of Projects and Employees. A
Project comprises distinct UseCases each one of which is implemented by
some Software.

Transformation. It begins (see Figure A.4) by creating a Company

element where itsEmployees and itsProjects are obtained from the user

and page tables, respectively (lines 2-9). Each user tuple gives rise to an
Employee class (lines 11-16). By contrast, only pages whose category is
“Projects” (see filter at line 22) will be turned into a Project class. For
each project page, the transformation looks at its hyperlinks (collected

195

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Figure A.2: Editing a wiki article. Notice the use of two templates,
UseCase and Software, for capturing use cases and software descriptions,
respectively.

in the mypagelinks table, see line 25) which hold foreign keys to related
wiki articles. For those related articles categorized as “UseCases” (line
40), a usecase model is obtained. However, wiki articles are kept as mere
strings held into the old_text column. For usecase articles, we know this
string is framed by a wiki template. On this premise, we use the function
provided by Schemol parameter(templateName, parameterName). This
function makes us perceive wiki templates as “nested tables”, and template
parameters as table columns. Lines 42-49 illustrate how template
parameters name, description and project_leader are dug out to fill their
model property counterparts.

Interestingly, template parameters can use other templates to facilitate
their specification. The “target_software” parameter is a case in point.

196

Chapter A. Harvesting Models from Wiki Content

Figure A.3: MediaWiki database schema (partial view) and UseCase
metamodel.

This parameter does not hold an “atomic” value but a UseCase template.
In this case, the expression “old_text.parameter(“UseCase”, “target_

software”)” (lines 46-47) does not yield a string but a tuple. Better
said, since a project can involve distinct software packages, the previous
expression can potentially retrieve a set of tuples. Lines 46-47 result
into a model association (i.e., itsSoftware) between a use case model
and its software packages. According to the binding semantics, this
assignment leads to the triggering of the ’software’ rule (lines 51-61).
The ’software’ rule is worth looking at. It handles the transformation of
the template target_software which is embedded as part of the old_text

column. Template instances are conceived as tuples of “nested tables”.
To refer to this nested table, Schemol creates a table name after the name
of the template plus the prefix EMB (e.g., EMBtarget_software). This term
can then be used in a rule’s FROM (line 52). Similar functions are available
to handle other hidden annotations in Web2.0 resources.

This example accounts for 75 LOC. The JDBC counterpart involves
around 400 LOC. As for other DSLs, the gains are not only on development
but also on maintenance and understanding.

197

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Figure A.4: Schemol transformation for the MediaWiki case study.

A.5 Related Work

The interest in model harvesting should be sought in the increasing
upheaval on software modernization, specifically when MDE techniques
are used. OMG’s Architecture Driven Modernization (ADM) initiative
[ADM] aims to facilitate the interoperability between modernization tools
by defining a set of standard metamodels for representing information
involved in a software modernization process. In fact, the metamodel
provided by ADM to represent software artefacts, named KDM, includes
persistent data as one of the assets to be captured. In this scenario, model
harvesting is a key enabler as the first step to abstract for technological
platforms, and building effective bridges between TSs.

MoDisco (Model Discovery) is an extensible framework for model-
driven reverse engineering, supported as an Eclipse Generative Modeling
Technology (GMT) component [BBJ+10]. Its objective is to facilitate
the development of tools (“discoverers” in MoDisco terminology) to
obtainmodels from legacy systems during modernization efforts. XML and

198

Chapter A. Harvesting Models from Wiki Content

Java discoverers are available. Schemol could then become an additional
MoDisco discoverer for relational data.

A.6 Conclusions

As MDE becomes a mainstream, model harvesting gains prominence as a
key enabler to bridge other technical spaces to modelware. This chapter
introduced Schemol for harvesting wiki models out databases DSL for
model harvesting out of databases. This approach allowed WikiWhirl
to extract models through model transformations. Hence, improving the
maintenance and evolution of the tools: (i) changes on database schemas
and (ii) modifications on the target models (e.g., FreeMind model) only
impact on the transformations. As far as we are aware of, this work is the
first that provides this perspective.

As future work, there are several challenging threads to pursue. First,
we plan to improve the interoperability of Schemol by facilitating drivers
for other DBMS and metamodel languages. Also, we would like to conduct
experiments on the usability of Schemol. Finally, another interesting
direction is to tap on existing HTML extractive methods rather than
building our own in Schemol.

Parts of this chapter have already been published:

• Oscar Díaz, Gorka Puente, Javier Luis Cánovas Izquierdo, Jesús
García Molina, “Harvesting Models from Web 2.0 Databases”. In
Software and Systems Modeling journal, (SoSyM), 2011. JCR,
Impact factor 1.533.

199

Appendix B

MySQL Script for the Merge
Operation

“All parts should go together without forcing. You must
remember that the parts you are reassembling were

disassembled by you. Therefore, if you can’t get
them together again, there must be a reason.

By all means, do not use a hammer.”
– IBM maintenance (1925).

Refactoring operations are transactions over the wiki database,
specifically over the MediaWiki database. WikiWhirl automatically
generates MySQL statements to modify the database with the refactoring
changes. This appendix shows the MySQL script generated for the merge
operation, which is based on the operational semantics.

201

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Figure B.1: MySQL script automatically generated by WikiWhirl for the
merge operation.

202

Appendix C

MediaWiki Background
Questionnaire

“Judge a man by his questions rather than by his answers.”

– François Marie Arouet ’Voltaire’.

We are performing a study to evaluate use of WikiWhirl, a tool to
support wiki initialization and restructuration of Wikis, which has been
developed by the Onekin group of the University of the Basque Country
(UPV/EHU). In this first questionnaire we want to evaluate your previous
MediaWiki knowledge in order to create the experimental groups1. All
data will be stored anonymously. Thank you for your collaboration and
the honesty of your answers.

1. Write the first three letters of your mother’s name followed by
the last four figures of your national ID number. Keeping your
data anonymous, this code will be used to create homogeneous
experimental groups. On the day of the experiment this code will
be used again (e.g., Mary, ID 12345678F –> Code MAR5678).

1As all wikis participants collaborate in are built using MediaWiki and in order to
avoid confusion, in the rest of the questionnaire questions refer to wikis in general.

203

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Basic Concepts

Decide if the statements are true or false

1. Only the original author can modify a wiki

(a) True

(b) False

2. HTML knowledge is required to create or edit articles of a wiki

(a) True

(b) False

Wiki Knowledge

1. I know how to edit an article in a wiki

2. I know how to create an article in a wiki

3. I know how to delete an article in a wiki

4. I know how to create a category in a wiki

5. To rename a category, it is enough to click the corresponding button.

6. To change an article’s category (categorize), it is enough to edit it
and to change categoryName in [[Category:categoryName]]

Wiki Use

We want to know the frequency with which you perform the following
tasks.

1. I add content to existing articles

(a) Never

204

Chapter C. MediaWiki Background Questionnaire

(b) Between 1 and 5 times a WEEK

(c) Between 6 and 10 times a WEEK

(d) More than 10 times a WEEK

2. I create new articles

(a) Never

(b) Between 1 and 5 times a YEAR

(c) Between 6 and 10 times a YEAR

(d) More than 10 times a YEAR

3. I create new categories

(a) Never

(b) Between 1 and 5 times a YEAR

(c) Between 6 and 10 times a YEAR

(d) More than 10 times a YEAR

4. I reorganize existing article an category groups (e.g., assign articles
to new categories, change article names, etc.)

(a) Never

(b) Between 1 and 5 times a YEAR

(c) Between 6 and 10 times a YEAR

(d) More than 10 times a YEAR

Others

1. Describe your relationship with Wikipedia

(a) I consult it

205

Improving Creation, Maintenance and Contribution in Wikis with DSLs

(b) I consult it and I have an account

(c) I am an active user

(d) None of the above

206

Appendix D

Global Understandability
Questionnaire

“Research is to see what everybody else has seen,

and to think what nobody else has thought.”

– Albert Szent-Gyorgyi.

In this questionnaire we want to evaluate how easy it is to understand
the structure and content of the wiki. All data will be stored anonymously.
Thank you for your collaboration.

1. Write the first three letters of your mother’s name followed by
the last four figures of your national ID number. Keeping your
data anonymous, this code will be used to create homogeneous
experimental groups. On the day of the experiment this code will
be used again (e.g., Mary, ID 12345678F –> Code MAR5678).

WikiVet Questions

1. Could you name two parent categories of Blood_Changes?

207

Improving Creation, Maintenance and Contribution in Wikis with DSLs

(a) A category can only have one parent category, in this case
Clinical_Pathology.

(b) WikiBlood and Clinical_Pathology.

(c) General Pathology and WikiEpi.

2. Mycoplasmas are characterized as Infectious_Agents?

(a) Yes.

(b) No, they are characterized as a pathology (WikiPath).

(c) No, they are characterized as a virus (Viruses).

3. Which statement indicates MORE PRECISELY the relation between
articles Anaplasmosis and Coagulation_Tests?

(a) Both are characterized as general pathologies.

(b) Both are characterized as pathologies (WikiPath).

(c) Both are characterized as degenerative pathologies
(Degenerations).

4. Fungi are characterized as...

(a) Mycoses

(b) Infectious_Agents

(c) Bacteria

5. How many articles are characterized as epidemiology (WikiEpi)?

(a) 1

(b) 3

(c) 4

6. In total, how many articles and categories are characterized as
pathologies (WikiPath)?

208

Chapter D. Global Understandability Questionnaire

(a) 2

(b) 9

(c) 10

7. How many categories are defined in the WikiVet wiki?

(a) 5

(b) 24

(c) 25

8. With the data available in the wiki, would it be correct to characterize
the Anaplasmosis as a Clinical_Pathology?

(a) No, because it has nothing to do with pathologies.

(b) No, because even if it characterized as a pathology, it is
characterized as a General_Pathology.

(c) Yes, because it is related to Clinical_Pathology.

9. With the data available in the wiki, what do you think the
Short_Courses article is about?

(a) About short courses in epidemiology (WikiEpi).

(b) About short courses in education.

(c) About short courses in veterinary (Wikivet).

10. With the data available in the wiki, what have cells, la anaemia and
haematology changes in common?

(a) They are clinical pathologies.

(b) They are all related to blood.

(c) They characterize immunology and pressure.

209

Improving Creation, Maintenance and Contribution in Wikis with DSLs

11. With the data available in the wiki, do you believe that an
haematology change can indicate a clinical pathology?

(a) No, an haematology change does not indicate a clinical
pathology.

(b) Yes, both concepts are related in the wiki.

(c) No, both conceps are not related in the wiki.

12. With the data available in the wiki, do you believe that anaplasmosis
is caused by a parasite?

(a) No, it is caused by a bacteria.

(b) Yes, both concepts are related in the wiki.

(c) No, both conceps are not related in the wiki.

13. With the data available in the wiki, do you believe that parasites can
be...?

(a) Fungy and bacteria.

(b) Mycoses y mycoplasmas.

(c) None of the above.

14. With the data available in the wiki, do you believe that paracetamol
is prescribed in...?

(a) Degenerative pathologies.

(b) Clinical pathologies.

(c) No answer can be deduced from the wiki.

210

Appendix E

Final Questionnaire

“Knowing is not enough, you must apply;

willing is not enough, you must do.”

– Bruce Lee.

We are performing a study to evaluate use of WikiWhirl, a tool to
support wiki initialization and restructuration of Wikis, which has been
developed by the Onekin group of the University of the Basque Country
(UPV/EHU). This last questionnaire has two short sections. All data will
be stored anonymously. Thank you for your collaboration and the honesty
of your answers.

General

1. Write the first three letters of your mother’s name followed by
the last four figures of your national ID number. Keeping your
data anonymous, this code will be used to create homogeneous
experimental groups. On the day of the experiment this code will
be used again (e.g., Mary, ID 12345678F –> Code MAR5678).

2. Gender

211

Improving Creation, Maintenance and Contribution in Wikis with DSLs

(a) Female

(b) Male

3. Age

4. Rate your programming background (1-none, 5-expert)

5. Rate your Web engineering background (1-none, 5-expert)

6. Rate your Web 2.0 background (1-none, 5-expert)

7. Rate your collaborative system background (1-none, 5-expert)

8. Rate your mind mapping background (1-none, 5-expert)

Execution

In this section the performed tasks and the invested time are collected. For
each task, we ask you to write whether you have finished its parts and how
long it took. Remember that it is normal not to have finished some of the
tasks in the allocated time.

FIRST TASK: Understand Content

1. I have finished the questionnaire on how undestandable the content
and structure of the wiki is.

2. If you have finished the task, write down the time it took (minutes).

SECOND TASK: Refactor the Wiki Structure

1. I have finished the CREATE operations in the handout.

2. If you have finished the CREATE operations, write down the time it
took (minutes).

3. I have finished the CATEGORIZE operations in the handout.

212

Chapter E. Final Questionnaire

4. If you have finished the CATEGORIZE operations, write down the
time it took (minutes).I have finished the CREATE operations in the
handout.

5. If you have finished the UNCATEGORIZE operations, write down
the time it took (minutes).I have finished the CREATE operations in
the handout.

6. If you have finished the UNCATEGORIZE operations, write down
the time it took (minutes).

7. I have finished the RENAME operations in the handout.

8. If you have finished the RENAME operations, write down the time
it took (minutes).

9. I have finished the DROP operations in the handout.

10. If you have finished the DROP operations, write down the time it
took (minutes).

THIRD TASK: Refactor the Wiki Content

1. I have finished the SPLIT operations in the handout.

2. If you have finished the SPLIT operations, write down the time it
took (minutes).

3. I have finished the MERGE operations in the handout.

4. If you have finished the MERGE operations, write down the time it
took (minutes).

5. I have finished the MOVE operations in the handout.

6. If you have finished the MOVE operations, write down the time it
took (minutes).

213

Bibliography

[AC10] Judd Antin and Coye Cheshire. Readers are not Free-
Riders: Reading as a Form of Participation on Wikipedia.
In Proceedings of the 2010 ACM conference on Computer

supported cooperative work, CSCW ’10, pages 127–130.
ACM, 2010.

[AdAMV+11] B. Thomas Adler, Luca de Alfaro, Santiago Moisés Mola-
Velasco, Paolo Rosso, and Andrew G. West. Wikipedia
Vandalism Detection: Combining Natural Language,
Metadata, and Reputation Features. In Proceedings

of the 12th international conference on Computational

linguistics and intelligent text processing - Volume Part II,
CICLing’11, pages 277–288. Springer-Verlag, 2011.

[ADM] Architecture-Driven Modernization (ADM). Online;
http://adm.omg.org [accessed July 2012].

[ADM09] Ademar Aguiar, Uri Dekel, and Paulo Merson. Wikis
for Software Engineering. In Proceedings of the

31st International Conference on Software Engineering,

ICSE Companion, Wikis4SE’09, pages 480–481. IEEE
Computer Society, 2009.

[Ame09] David Ameller. Considering Non-Functional
Requirements in Model-Driven Engineering. Master’s

215

http://adm.omg.org

Improving Creation, Maintenance and Contribution in Wikis with DSLs

thesis, Universitat Politècnica de Catalunya, Barcelona,
Spain, 2009.

[ASR+10] O. Arazy, E. Stroulia, S. Ruecker, C. Arias, C. Fiorentino,
V. Ganev, and T. Yau. Recognizing Contributions in Wikis:
Authorship Categories, Algorithms, and Visualizations.
Journal of the American Society for Information Science

and Technology (JASIST), pages 1166–1179, 2010.

[ath] ATHENA (MDI) Framework. Online; www.

modelbased.net/mdi/index.html. [accessed
July 2012].

[AVG10] AVG. AVG LinkScanner - How it Works, 2010.
Online; http://linkscanner.avg.com/ww.

sals-how-it-works.html [accessed July 2012].

[BAGB11] Ankica Barisic, Vasco Amaral, Miguel Goulão, and Bruno
Barroca. Quality in Use of Domain-Specific Languages: a
Case Study. In Proceedings of the 3rd ACM SIGPLAN

Workshop on Evaluation and Usability of Programming

Languages and Tools, PLATEAU’11, pages 65–72. ACM,
2011.

[Bas92] Victor R. Basili. Software Modeling and Measurement: the
Goal/Question/Metric Paradigm. Technical report, College
Park, MD, USA, 1992.

[Bat06] Don S. Batory. Multilevel Models in Model-Driven
Engineering, Product Lines, and Metaprogramming. IBM

Systems Journal, 45(3):527–540, 2006.

[BBJ+10] Gabriel Barbier, Hugo Bruneliere, Frédéric Jouault, Yves
Lennon, and Frédéric Madiot. Modisco, A Model-
Driven Platform to Support Real Legacy Modernization

216

www.modelbased.net/mdi/index.html
www.modelbased.net/mdi/index.html
http://linkscanner.avg.com/ww.sals-how-it-works.html
http://linkscanner.avg.com/ww.sals-how-it-works.html

BIBLIOGRAPHY

Uses Cases. In Information Systems Transformation:

Architecture-Driven Modernization Case Studies. Elsevier
Science, 2010.

[Béz04] Jean Bézivin. In Search of a Basic Principle for Model-
Driven Engineering. UPGRADE, The European Journal

for the Informatics Professional, Special Issue on UML

and Model Engineering, 5(2):21–24, 2004.

[BG06] Michel Buffa and Fabien Gandon. SweetWiki: Semantic
Web Enabled Technologies in Wiki. In Proceedings

of the 2th International Symposium on Wikis and Open

Collaboration, WikiSym ’06, pages 69–78. ACM, 2006.

[BG10] Tony Buzan and Chris Griffiths. Mind Maps for Business.
BBC active, 2010.

[BK05] Jean Bezivin and Ivan Kurtev. Model-based Technology
Integration with the Technical Space Concept. In
Proceedings of the Metainformatics Symposium. Springer-
Verlag, 2005.

[BLW05] Paul Baker, Shiou Loh, and Frank Weil. Model-Driven
Engineering in a Large Industrial Context - Motorola Case
Study. In 8th International Conference on Model Driven

Engineering Languages and Systems, volume 3713 of
MoDELS’05, pages 476–491. Springer, 2005.

[Bou99] Niels Olof Bouvin. Unifying Strategies for Web
Augmentation. In Proceedings of the tenth ACM

Conference on Hypertext and hypermedia : returning

to our diverse roots: returning to our diverse roots,
HYPERTEXT ’99, pages 91–100. ACM, 1999.

[BQBB10] Gillian Brown, Megan Quentin-Baxter, and Zoe Belshaw.
WikiVet: Building a Community of Practice to Support

217

Improving Creation, Maintenance and Contribution in Wikis with DSLs

a Self-sustaining Wiki for Veterinary Education.
International Journal of Web Based Communities

(IJWBC), 6(2):183–196, 2010.

[BSV10] Jean Bézivin, Richard Mark Soley, and Antonio
Vallecillo. Editorial to the Proceedings of the First
International Workshop on Model-Driven Interoperability.
In Proceedings of the First International Workshop on

Model-Driven Interoperability, MDI ’10, pages 1–2, New
York, NY, USA, 2010. ACM.

[Béz04] Jean Bézivin. In Search of a Basic Principle for Model
Driven Engineering. Novatica Upgrade, V(2):21–24,
2004.

[Car03] Kathleen M. Carley. Dynamic Network Analysis, pages
133–145. Dynamic Social Network Modeling and
Analysis:. Committee on Human Factors and National
Research Council, 2003.

[Car07] Dan Carlin. Corporate Wikis Go Viral, 2007.
Online; www.businessweek.com/technology/

content/mar2007/tc20070312_476504.htm

[accessed July 2012].

[CH06] Krzysztof Czarnecki and Simon Helsen. Feature-Based
Survey of Model Transformation Approaches. IBM

Systems Journal, 45(3):621–646, 2006.

[CL12] Michael Cariaso and Greg Lennon. SNPedia: a Wiki
Supporting Personal Genome Annotation, Interpretation
and Analysis. Nucleic Acids Research, 40(Database-
Issue):1308–1312, 2012.

[CMT06] Jesús Sánchez Cuadrado, Jesús García Molina, and
Marcos Menárguez Tortosa. RubyTL: A Practical,

218

www.businessweek.com/technology/content/mar2007/tc20070312_476504.htm
www.businessweek.com/technology/content/mar2007/tc20070312_476504.htm

BIBLIOGRAPHY

Extensible Transformation Language. In Proceedings

of the Second European conference on Model Driven

Architecture: foundations and Applications, ECMDA-
FA’06. Springer-Verlag, 2006.

[Coh88] Jacob Cohen. Statistical Power Analysis for the Behavioral

Sciences. Lawrence Erlbaum Associates, 2 edition, 1988.

[Col09] Melissa Cole. Using Wiki Technology to Support Student
Engagement: Lessons from the Trenches. Computers &

Education, 52(1):141–146, 2009.

[Cun02] Ward Cunningham. What Is Wiki, 2002. Online; www.
wiki.org/wiki.cgi?WhatIsWiki [accessed July
2012].

[Cun06] Ward Cunningham. Design principles of wiki: how can so
little do so much? In Proceedings of the 2006 international

symposium on Wikis, WikiSym ’06, pages 13–14. ACM,
2006.

[Cun11] Ward Cunningham. Smallest Federated Wiki,
2011. Online; http://c2.com/cgi/wiki?

SmallestFederatedWiki [accessed July 2012].

[Cza05] Krzysztof Czarnecki. Overview of Generative Software
Development. Unconventional Programming Paradigms,
3566(Unconventional Programming Paradigms):326–341,
2005.

[DAP12] Oscar Díaz, Cristobal Arellano, and Gorka Puente.
Wikipedia Customization through Web Augmentation
Techniques. In Proceedings of the 8th International

Symposium on Wikis and Open Collaboration, WikiSym
’12. ACM, 2012.

219

www.wiki.org/wiki.cgi?WhatIsWiki
www.wiki.org/wiki.cgi?WhatIsWiki
http://c2.com/cgi/wiki?SmallestFederatedWiki
http://c2.com/cgi/wiki?SmallestFederatedWiki

Improving Creation, Maintenance and Contribution in Wikis with DSLs

[DP10] Oscar Díaz and Gorka Puente. Model-Aware Wiki
Analysis Tools: the Case of HistoryFlow. In Proceedings

of the 6th International Symposium on Wikis and Open

Collaboration, WikiSym ’10. ACM, 2010.

[DP11a] Oscar Díaz and Gorka Puente. A DSL for Corporate
Wiki Initialization. In Proceedings of the 23th

International Conference on Advanced Information

Systems Engineering, CAiSE’11, pages 237–251.
Springer, 2011.

[DP11b] Oscar Díaz and Gorka Puente. Wiki Scaffolding: Helping
Organizations to Set Up Wikis. In Proceedings of

the 7th International Symposium on Wikis and Open

Collaboration, WikiSym ’11, pages 154–162. ACM, 2011.

[DP12] Oscar Díaz and Gorka Puente. Wiki Scaffolding: Aligning
Wikis with the Corporate Strategy. Information Systems

journal, 37(8):737–752, 2012.

[DPA11] Oscar Díaz, Gorka Puente, and Cristóbal Arellano. Wiki
Refactoring: an Assisted Approach based on Ballots. In
Proceedings of the 7th International Symposium on Wikis

and Open Collaboration, WikiSym ’11, pages 195–196.
ACM, 2011.

[DPCIGM11] Oscar Díaz, Gorka Puente, Javier Luis Cánovas Izquierdo,
and Jesús García Molina. Harvesting Models from Web
2.0 Databases. Software and Systems Modeling, SoSyM,
pages 1–20, 2011. 10.1007/s10270-011-0194-z.

[DS08] Catalina Danis and David Singer. A Wiki instance in
the Enterprise: Opportunities, Concerns and Reality. In
Proceedings of the 2008 ACM conference on Computer

220

BIBLIOGRAPHY

supported cooperative work, CSCW ’08, pages 495–504.
ACM, 2008.

[Due08] Gunter Dueck. Bluepedia. Informatik Spektrum,
31(3):262–269, 2008.

[EGHW08] Anja Ebersbach, Markus Glaser, Richard Heigl, and
Alexander Warta. Wiki: Web Collaboration. Springer-
Verlag New York Inc, 2008.

[EMF] Eclipse Modeling Framework. Online; www.eclipse.
org/modeling/emf [accessed July 2012].

[Fil06] Robert E. Filman. Taking Back the Web. IEEE Internet

Computing, 10:3–5, 2006.

[Fin09] Finding ROI. Measuring Intranet Investments. Technical
report, Prescient Digital Media, 2009.

[Fow99] Martin Fowler. Refactoring: Improving the Design of

Existing Code. Addison-Wesley, 1999.

[Fre] FreeMind, Mind Mapping Software. Online; http://
freemind.sourceforge.net [accessed July 2012].

[Fre10] Chuck Frey. Mind Mapping Software User Survey, 2010.
Online at http://mindmappingsoftwareblog.

com/2010-survey-form [accessed December 2012].

[GKSK11] Chitrabharathi Ganapathy, Jeon-Hyung Kang, Erin Shaw,
and Jihie Kim. Classification Techniques for Assessing
Student Collaboration in Shared Wiki Spaces. In
Proceedings of the 15th international conference on

Artificial intelligence in education, AIED’11, pages 456–
458. Springer-Verlag, 2011.

221

www.eclipse.org/modeling/emf
www.eclipse.org/modeling/emf
http://freemind.sourceforge.net
http://freemind.sourceforge.net
http://mindmappingsoftwareblog.com/2010-survey-form
http://mindmappingsoftwareblog.com/2010-survey-form

Improving Creation, Maintenance and Contribution in Wikis with DSLs

[GP10] Jonathan Grudin and Erika Shehan Poole. Wikis at Work:
Success Factors and Challenges for Sustainability of
Enterprise Wikis. In Proceedings of the 6th International

Symposium on Wikis and Open Collaboration, WikiSym
’10, pages 5:1–5:8. ACM, 2010.

[Gro09] Future Melbourne Reference Group. Future Melbourne
Wiki: Post Implementation Review. Technical report, City
of Melbourne, 2009.

[HDW10] Lester J. Holtzblatt, Laurie E. Damianos, and Daniel
Weiss. Factors Impeding Wiki Use in the Enterprise: a
Case Study. In Proceedings of the 28th International

Conference on Human Factors in Computing Systems,

Extended Abstracts Volume, CHI’10, pages 4661–4676.
ACM, 2010.

[HF12] R. Stuart Geiger Heather Ford. "Writing Up Rather
than Writing Down": Becoming Wikipedia Literate. In
Proceedings of the 8th International Symposium on Wikis

and Open Collaboration, WikiSym ’12. ACM, 2012.

[HHGC10] Christian Hirsch, John G. Hosking, John C. Grundy, and
Tim Chaffe. ThinkFree: Using a Visual Wiki for IT
Knowledge Management in a Tertiary Institution. In Int.

Sym. Wikis, WikiSym ’10, pages 7:1–7:10. ACM, 2010.

[HMPR04] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and
Sudha Ram. Design Science in Information Systems
Research. MIS Quarterly, 28(1):75–105, 2004.

[HSB07] Martin Hepp, Katharina Siorpaes, and Daniel Bachlechner.
Harvesting Wiki Consensus: Using Wikipedia Entries as
Vocabulary for Knowledge Management. IEEE Internet

Computing, 11(5):54–65, 2007.

222

BIBLIOGRAPHY

[HWRK11] John Hutchinson, Jon Whittle, Mark Rouncefield, and
Steinar Kristoffersen. Empirical Assessment of MDE
in Industry. In Proceedings of the 33rd International

Conference on Software Engineering, ICSE ’11, pages
471–480. ACM, 2011.

[HWS07] Wu-Yuin Hwang, Chin-Yu Wang, and Mike Sharples. A
Study of Multimedia Annotation of Web-Based Materials.
Computers & Education, 48(4):680–699, 2007.

[IM10] Javier Luis Cánovas Izquierdo and Jesús García
Molina. An Architecture-Driven Modernization Tool
for Calculating Metrics. IEEE Software, 27(4):37–43,
2010.

[ISO] ISO/IEC 9126-1:2001 Software engineering – Product
quality – Part 1: Quality model.

[JABK08] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan
Kurtev. ATL: A Model Transformation Tool. Sci. Comput.

Program., 72(1-2):31–39, 2008.

[JML11] Sara Javanmardi, David W. McDonald, and
Cristina Videira Lopes. Vandalism Detection in Wikipedia:
a High-Performing, Feature-Rich Model and its Reduction
through Lasso. In Proceedings of the 7th International

Symposium on Wikis and Open Collaboration, WikiSym
’11, pages 82–90. ACM, 2011.

[Joh92] Peter Johnson. Human Computer Interaction: Psychology,

Task Analysis, and Software Engineering. McGraw-Hill,
1992.

[JP05] Andreas Jedlitschka and Dietmar Pfahl. Reporting
Guidelines for Controlled Experiments in Software

223

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Engineering. In Proceedings of the International

Symposium on Empirical Software Engineering,
ISESE’05, pages 95–104, 2005.

[JPBB07] Guy Doumeingts Jean-Pierre Bourey, Reyes Grangel and
Arne J. Berre. Report on Model Driven Interoperability.
Technical report, INTEROP, Interoperability Research for
Networked Enterprises Applications and Software, 2007.

[KBA02] Ivan Kurtev, Jean Bézivin, and Mehmet Aksit.
Technological Spaces: An Initial Appraisal. In
Proceedings of the International Symposium on

Distributed Objects and Applications, CoopIS, DOA’02
Federated Conferences, Industrial Track, 2002.

[KCH+90] Kyo C. Kang, Sholom G. Cohen, James A. Hess,
William E. Novak, and A. Spencer Peterson. Feature-
Oriented Domain Analysis (FODA) Feasibility Study.
Technical report, Carnegie-Mellon University Software
Engineering Institute, 1990.

[KMC11] Joachim Kimmerle, Johannes Moskaliuk, and Ulrike
Cress. Using Wikis for Learning and Knowledge Building:
Results of an Experimental Study. Educational Technology

& Society, 14(4):138–148, 2011.

[Lam04] Briam Lamb. Taking a Walk on the
Wiki Side, 2004. Online; http://

campustechnology.com/articles/2004/

04/taking-a-walk-on-the-wiki-side.aspx

[accessed July 2012].

[LB10] Hyunkyung Lee and Curtis Bonk. The Use of Wikis
for Collaboration in Corporations: Perceptions and
Implications for Future Research. In World Conference on

224

http://campustechnology.com/articles/2004/04/taking-a-walk-on-the-wiki-side.aspx
http://campustechnology.com/articles/2004/04/taking-a-walk-on-the-wiki-side.aspx
http://campustechnology.com/articles/2004/04/taking-a-walk-on-the-wiki-side.aspx

BIBLIOGRAPHY

E-Learning in Corporate, Government, Healthcare, and

Higher Education, 2010.

[LDP+11] Ioanna Lykourentzou, Younes Djaghloul, Katerina
Papadaki, Foteini Dagka, and Thibaud Latour. Planning
for a Successful Corporate Wiki. In Proceedings of the

Digital Enterprise and Information Systems - International

Conference, DEIS 2011, pages 425–439. Springer, 2011.

[LDP+12] Ioanna Lykourentzou, Foteini Dagka, Katerina Papadaki,
Giorgos Lepouras, and Costas Vassilakis. Wikis in
Enterprise Settings: a Survey. Enterprise Information

Systems, 6(1):1–53, 2012.

[LE07] Ralph Lengler and Martin J. Eppler. Towards a Periodic
Table of Visualization Methods for Management. In
International Conference on Graphics and Visualization in

Engineering, GVE’07, pages 1–6, 2007.

[LOO+12] Cliff Lampe, Jonathan Obar, Elif Ozkaya, Paul Zube, and
Alcides Velasquez. Classroom Wikipedia Participation
Effects on Future Intentions to Contribute. In Proceedings

of the ACM 2012 conference on Computer Supported

Cooperative Work, CSCW ’12, pages 403–406. ACM,
2012.

[Lou06] Panagiotis Louridas. Using Wikis in Software
Development. IEEE Software, 23(2):88–91, 2006.

[Mad08] Stewart Mader. Wikipatterns : A Practical Guide

to Improving Productivity and Collaboration in your

Organization. John Wiley & Sons Inc, 2008.

[McF05] Nigel McFarlane. Fixing Web Sites with Greasemonkey.
Linux Journal, 138:1, 2005.

225

Improving Creation, Maintenance and Contribution in Wikis with DSLs

[McH12] Roger McHaney. The Web 2.0 Mandate for a Transition
from Webmaster to Wiki Master. In Open-Source

Technologies for Maximizing the Creation, Deployment,

and Use of Digital Resources and Information. Shalin Hai-
Jew, 2012.

[MD08a] Parastoo Mohagheghi and Vegard Dehlen. Where Is
the Proof? - A Review of Experiences from Applying
MDE in Industry. In Proceedings of the 4th European

conference on Model Driven Architecture: Foundations

and Applications, ECMDA-FA ’08, pages 432–443.
Springer-Verlag, 2008.

[MD08b] Parastoo Mohagheghi and Vegard Dehlen. Where Is the
Proof? - A Review of Experiences from Applying MDE
in Industry. In 4th European Conference on Model Driven

Architecture - Foundations and Applications, volume 5095
of ECMDA-FA’08, pages 432–443. Springer, 2008.

[mem03] OMG members. MDA Guide Version 1.0.1. Technical
report, OMG, 2003. Online; http://www.omg.org/
cgi-bin/doc?omg/03-06-01 [accessed 3-Feb-12].

[Men] Bank Identification Number (BIN) Sponsorship. Online;
http://goo.gl/VNL4X. [accessed July 2012].

[MF12] Mostafa Mesgari and Samer Faraj. Technology
Affordances: The Case of Wikipedia. In Proceedings

of the 18th Americas Conference on Information Systems,
AMCIS’12, 2012.

[MFBC10] Pierre-Alain Muller, Frédéric Fondement, Benoît Baudry,
and Benoît Combemale. Modeling Modeling Modeling.
Software and Systems Modeling, pages 1–13, 2010.
10.1007/s10270-010-0172-x.

226

http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://goo.gl/VNL4X

BIBLIOGRAPHY

[MHS05] Marjan Mernik, Jan Heering, and Anthony M. Sloane.
When and How to Develop Domain-Specific Languages.
ACM Comput. Surv., 37(4):316–344, 2005.

[MWY06] Ann Majchrzak, Christian Wagner, and Dave Yates.
Corporate Wiki Users: Results of a Survey. In Proceedings

of the 2006 international symposium on Wikis, WikiSym
’06, pages 99–104. ACM, 2006.

[Nor02] Donald A. Norman. The Design of Everyday Things. Basic
Books, 2002.

[Nov09] Beth Simone Noveck. Wiki Government: How Technology

Can Make Government Better, Democracy Stronger, and

Citizens more Powerful. Brookings institution press, 2009.

[NPO] Wikipedia’s Neutral Point of View Guidelines.
Online; http://en.wikipedia.org/wiki/

Wikipedia:Neutral_point_of_view [accessed
July 2012].

[NT95] I. Nonaka and H. Takeuchi. The Knowledge-Creating

Company: How Japanese Companies Create the

Dynamics of Innovation. Oxford University Press, 1995.

[Nyf09] Felix Nyffenegger. WikiMindMap, 2009. Online at www.
wikimindmap.org [accessed December 2012].

[Oli07] Antoni Olivé. Conceptual Modeling of Information

Systems. Springer, 2007.

[OMG] OMG. OMG Model Driven Architecture (MDA). Online;
www.omg.org/mda/. [accessed July 2012].

[OMG02] OMG. Meta Object Facility (MOF) Specification
- Version 1.4. Adopted Specification, April 2002.

227

http://en.wikipedia.org/wiki/Wikipedia:Neutral_point_of_view
http://en.wikipedia.org/wiki/Wikipedia:Neutral_point_of_view
www.wikimindmap.org
www.wikimindmap.org
www.omg.org/mda/

Improving Creation, Maintenance and Contribution in Wikis with DSLs

Online; http://www.omg.org/spec/MOF/1.4/

PDF/ [accessed June 2012]].

[ORe05] Tim OReilly. What Is Web 2.0, 2005. Online;
http://oreilly.com/pub/a/web2/archive/

what-is-web-20.html?page=1 [accessed July
2012].

[OVBD06] Eyal Oren, Max Völkel, John G. Breslin, and Stefan
Decker. Semantic Wikis for Personal Knowledge
Management. In Proceedings of the 17th international

conference on Database and Expert Systems Applications,
DEXA’06, pages 509–518. Springer-Verlag, 2006.

[Pat08] Susanne Patig. A Practical Guide to Testing the
Understandability of Notations. In Proceedings of the

5th Asia-Pacific Conference on Conceptual Modelling,
volume 79 of APCCM’08, pages 49–58. Australian
Computer Society, 2008.

[PD12] Gorka Puente and Oscar Díaz. Wiki Refactoring
as Mind Map Reshaping. In Proceedings of the

24th International Conference on Advanced Information

Systems Engineering, CAiSE’12. Springer, 2012.

[PDA13] Gorka Puente, Oscar Díaz, and Maider Azanza.
Refactoring Affordances in Corporate Wikis: A Case
for the Use of Mind Maps. Information Systems journal,
2013. Under review.

[Phu09] Ammy Jiranida Phuwanartnurak. Did you Put it
on the Wiki?: Information Sharing through Wikis in
Interdisciplinary Design Collaboration. In Proceedings

of the 27th Annual International Conference on Design

228

http://www.omg.org/spec/MOF/1.4/PDF/
http://www.omg.org/spec/MOF/1.4/PDF/
http://oreilly.com/pub/a/web2/archive/what-is-web-20.html?page=1
http://oreilly.com/pub/a/web2/archive/what-is-web-20.html?page=1

BIBLIOGRAPHY

of Communication, SIGDOC’09, pages 273–280. ACM,
2009.

[Ram06] Murali Raman. Wiki Technology as A "Free"
Collaborative Tool within an Organizational Setting. IS

Management, 23:59–66, 2006.

[RFD10] Martin Rosenfeld, Alejandro Fernández, and Alicia Díaz.
Semantic Wiki Refactoring. A Strategy to Assist Semantic
Wiki Evolution. In 5th Workshop on Semantic Wikis

Linking Data and People, SemWiki2010, 2010.

[RGvD06] Thijs Reus, Hans Geers, and Arie van Deursen. Harvesting
Software Systems for MDA-Based Reengineering. In
Proceedings of the 2nd European Conference on Model-

Driven Architecture - Foundations and Applications,
ECMDA-FA’06, pages 213–225. Springer-Verlag New
York, Inc., 2006.

[RRO05] Murali Raman, Terry Ryan, and Lorne Olfman. Designing
Knowledge Management Systems for Teaching and
Learning with Wiki Technology. Journal of Information

Systems Education, 16(3):311–321, 2005.

[Sar05] Edward P. Sarafino. Research Methods: Using Processes

& Procedures of Science to Understand Behavior. Pearson,
2005.

[SB09] Klaus Stein and Steffen Blaschke. Corporate Wikis: A
Comparative Analysis of Structures and Dynamics. In
Fifth Conference Professional Knowledge Management:

Experiences and Visions, Wissensmanagement’09, pages
77–86. GI, 2009.

[SBBK08] Sebastian Schaffert, François Bry, Joachim Baumeister,
and Malte Kiesel. Semantic Wikis. IEEE Software, 2008.

229

Improving Creation, Maintenance and Contribution in Wikis with DSLs

[Sch06] Douglas C. Schmidt. Guest Editor’s Introduction: Model-
Driven Engineering. IEEE Computer, 39(2):25–31, 2006.

[SDJ+08] Yu Sun, Zekai Demirezen, Frédéric Jouault, Robert Tairas,
and Jeff Gray. A Model Engineering Approach to Tool
Interoperability. In Proceedings of the 2008 Software

Language Engineering, SLE’08, pages 178–187. Springer-
Verlag, 2008.

[Sei03] Ed Seidewitz. What Models Mean. IEEE Software,
20(5):26–32, 2003.

[Sel03] Bran Selic. The Pragmatics of Model-Driven
Development. IEEE Software, 20(5):19–25, 2003.

[Sel07] Bran Selic. From Model-Driven Development to Model-
Driven Engineering. In Proceedings of the 19th Euromicro

Conference on Real-Time Systems, ECRTS’07, page 3.
IEEE Computer Society, 2007.

[Sem] Semantic MediaWiki SMW. Online; http://

semantic-mediawiki.org/wiki/Semantic_

MediaWikis [accessed July 2012].

[SHH+05] Dag I. K. Sjoberg, Jo E. Hannay, Ove Hansen,
Vigdis By Kampenes, Amela Karahasanovic, Nils-Kristian
Liborg, and Anette C. Rekdal. A Survey of Controlled
Experiments in Software Engineering. IEEE Transactions

on Software Engineering, 31(9):733–753, September
2005.

[SK06] Yuyan Su and James Klein. Effects of Navigation Tools
and Computer Confidence on Performance and Attitudes
in a Hypermedia Learning Environment. Journal of

Educational Multimedia and Hypermedia, 15(1):87–106,
2006.

230

http://semantic-mediawiki.org/wiki/Semantic_MediaWikis
http://semantic-mediawiki.org/wiki/Semantic_MediaWikis
http://semantic-mediawiki.org/wiki/Semantic_MediaWikis

BIBLIOGRAPHY

[Sky05] Skype. Skype button in Internet Explorer or Firefox
toolbar, 2005. Online; www.skype.com/intl/en/
support/user-guides/toolbar [accessed July
2012].

[SMB08] Ragnhild Van Der Straeten, Tom Mens, and Stefan Van
Baelen. Challenges in Model-Driven Software
Engineering. In Models in Software Engineering,
MoDELS’08 Workshops, pages 35–47. Springer-Verlag,
2008.

[Spe93] Paul E. Spector. Research Designs. Experimental Design

and Methods, pages 1–72, 1993.

[ST09] Alexander Stocker and Klaus Tochtermann. Exploring
the Value of Enterprise Wikis - A Multiple-Case Study.
In Proceedings of the 1st International Conference

on Knowledge Management and Information Sharing,
KMIS’09, pages 5–12. Springer, 2009.

[ST11] Alexander Stocker and Klaus Tochtermann. Enterprise
Wikis - Types of Use, Benefits and Obstacles: A
Multiple-Case Study. Communications in Computer and

Information Science, 128(4):297–309, 2011.

[TLEC11] Wei-Tek Tsai, Wu Li, Jay Elston, and Yinong Chen.
Collaborative Learning Using Wiki Web Sites for
Computer Science Undergraduate Education: A Case
Study. IEEE Trans. Education, 54(1):114–124, 2011.

[TMC08] Sacip Toker, James L. Moseley, and Ann T. Chow. Is
There a Wiki in Your Future?: Applications for Education,
Instructional Design, and General Use. Educational

Technology Magazine, page 6, 2008.

231

www.skype.com/intl/en/support/user-guides/toolbar
www.skype.com/intl/en/support/user-guides/toolbar

Improving Creation, Maintenance and Contribution in Wikis with DSLs

[TPP09] Franck Tétard, Erkki Patokorpi, and Kristian Packalén.
Using Wikis to Support Constructivist Learning: A Case
Study in University Education Settings. In Proceedings of

the 42nd Hawaii International International Conference

on Systems Science, HICSS ’09, pages 1–10. IEEE
Computer Society, 2009.

[TS10] Brendan Tansey and Eleni Stroulia. Annoki: a MediaWiki-
based Collaboration Platform. In Proceedings of the 1st

Workshop on Web 2.0 for Software Engineering, Web2SE
’10, pages 31–36. ACM, 2010.

[TSMDM09] Diego Torres, Hala Skaf-Molli, Alicia Díaz, and Pascal
Molli. Supporting Personal Semantic Annotations in P2P
Semantic Wikis. In Proceedings of the 20th International

Conference on Database and Expert Systems Applications,
DEXA ’09, pages 317–331. Springer-Verlag, 2009.

[UK07] Adam John Ullman and Judy Kay. WikiNavMap: a
Visualisation to Supplement Team-based Wikis. In CHI

Extended Abstracts, CHI EA’07, pages 2711–2716. ACM,
2007.

[UN10] William M. Ulrich and Philip H. Newcomb. Information

Systems Transformation: Architecture-Driven

Modernization Case Studies. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2010.

[Val08] Antonio Vallecillo. A Journey through the Secret Life
of Models. In Uwe As̈mann, Jean Bézivin, Richard
Paige, Bernhard Rumpe, and Douglas C. Schmidt, editors,
Perspectives Workshop: Model Engineering of Complex

Systems (MECS), number 08331 in Dagstuhl Seminar
Proceedings, Dagstuhl, Germany, 2008. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, Germany.

232

BIBLIOGRAPHY

[Val10] Antonio Vallecillo. On the Combination of Domain
Specific Modeling Languages. In Proceedings of the

6th European Conference on Modelling Foundations and

Applications, ECMFA’10, pages 305–320. Springer, 2010.

[Vat10] Ravi K. Vatrapu. Explaining Culture: an Outline of a
Theory of Socio-Technical Interactions. In Proceedings

of the 3rd international conference on Intercultural

collaboration, ICIC ’10, pages 111–120. ACM, 2010.

[vDKV00] Arie van Deursen, Paul Klint, and Joost Visser.
Domain-Specific Languages: An Annotated Bibliography.
SIGPLAN Notices, 35(6):26–36, 2000.

[Vis07] Eelco Visser. WebDSL: A Case Study in Domain-Specific
Language Engineering. In GTTSE, GTTSE’07, pages 291–
373. Springer-Verlag, 2007.

[VWD04] Fernanda B. Viégas, Martin Wattenberg, and Kushal
Dave. Studying Cooperation and Conflict between Authors
with History Flow Visualizations. In Proceedings of

the SIGCHI conference on Human factors in computing

systems, CHI ’04, pages 575–582. ACM, 2004.

[w3c] Use Case Wiki Template, W3C. Online; www.w3.org/
egov/wiki/Use_Case [accessed July 2012].

[War11] Toby Ward. The Social Intranet Study, 2011.

[Wik11] Wikimedia Foundation Public Policy Initiative, 2011.
Online; http://outreach.wikimedia.org/

wiki/Public_Policy_Initiative [accessed
July 2012].

233

www.w3.org/egov/wiki/Use_Case
www.w3.org/egov/wiki/Use_Case
http://outreach.wikimedia.org/wiki/Public_Policy_Initiative
http://outreach.wikimedia.org/wiki/Public_Policy_Initiative

Improving Creation, Maintenance and Contribution in Wikis with DSLs

[WLS+07] Hai H. Wang, Yuan-Fang Li, Jing Sun, Hongyu Zhang, and
Jeff Z. Pan. Verifying feature models using OWL. J. Web

Sem., 5(2):117–129, 2007.

[YA12] M. Lisa Yeo and Ofer Arazy. What Makes Corporate
Wikis Work? Wiki Affordances and Their Suitability for
Corporate Knowledge Work. In Seventh International

Conference on Design Science Research in Information

Systems and Technology, DESRIST’12, pages 174–190,
2012.

[YMY+08] Gil Yehuda, Kyle McNabb, G. Oliver Young, Sara Burnes,
and Zachary Reiss-Davis. Forrester TechRadar For I&KM
Pros: Enterprise Web 2.0 For Collaboration, 2008.

[ZKK12] H. Zhu, R. Kraut, and A. Kittur. Organizing without
Formal Organization: Group Identification, Goal Setting
and Social Modeling in Directing Online Production. In
Proceedings of the 2012 ACM conference on Computer

supported cooperative work, CSCW’12. ACM, 2012.

234

Acknowledgments

Let me start by adapting the famous quote of Henry Ford “Coming together
was the beginning, keeping together has been progress, and working
together is success.” Joining Onekin was only the beginning, and during
this time I have met many people that have really contributed to get this
thesis ready. That is why, with the following words, I try to thank everyone
that has somehow participated in it.

First and foremost, I would really like to thank my supervisor Prof.
Oscar Díaz for his invaluable support, patience and advice. His ideas
and way of thinking have really inspired me, and will certainly mark my
professional future. I would like to express my gratitude to Raúl Miñón,
who encouraged me to contact Oscar and, above all, for our friendship.

Oscar is the leader of the Onekin research group at the University of the
Basque Country (UPV/EHU). This group eagerly promotes collaboration,
and the success of a member implies the effort of others. Particularly, from
those who have been there from the very beginning, Cristóbal Arellano
was always ready to help in any aspect from Java coding or iPhone
jailbreaks to red tape; Sandy Pérez provided first-hand news ranging from
Apache projects or continuous delivery to beer fairs; and Maider Azanza
contributed with fruitful discussions about MDE, life and cooking, and
then she goes and reviews this thesis!. All you, hope our paths cross
again. I would like to show my appreciation to Jon Iturrioz who has been
an understanding mate; and Arantza Irastorza who volunteered (really!)
for reviewing this dissertation, putting a great effort on it. Of course, I
am glad for having spent time with the remaining members of Onekin:

235

Luis M. Alonso, Iker Azpeitia, Jokin García, Felipe Ibáñez, Felipe Martín,
Itziar Otaduy, Iñaki Paz and Iñigo Aldalur. We shared many moments,
discussions and coffe breaks.

This thesis was economically supported by the Spanish Ministry of
Education and Science, which permitted me to work full time on my
research and also to perform a research visit to the IWIS research group
at the Aalborg University (Denmark). I would like to thank Peter Dolog,
leader of the IWIS research group, for giving me the opportunity to work
with them and dedicating their time to me. My gratitude to Fred Durao and
Ricardo Lage for welcoming me to Aalborg.

One of the best things this PhD has given to me is the opportunity
to meet, work and even discuss with renowned internationally experts.
Specially, I would like to thank Jesús Garcia Molina, who leads the
ModelUM research group at the University of Murcia, Javier Luis Cánovas
Izquierdo and Jesús Sánchez Cuadrado. All of them have patiently helped
and explained me the nitty-gritty details of MDE, although it had a hefty
price, they eat a lot. Antonio Vallecillo, leader of the Atenea Systems
Modeling Group, who taught me about transformations chains, and that it
rains in Málaga, a lot. That also had a hefty price, I eat a lot.

I would also like to thank the external reviewers, Ademar Aguiar and
Christian Wagner, and the members of the dissertation committee, Antoni
Olivé, Antonio Vallecillo, Ioanna Lykourentzou, Oscar Pastor and José
Miguel Blanco, for their invaluable work.

To all my friends, Unai, Vanesa, Buba, Juantxo, Ana, Fernando, Silvia,
Birujo, Bea for all the good times, and because a dinner with you is worth
much.

To all my relatives but specially to my parents, Javi and Atxen, and my
brother Jon. They brought me up, and during all my life they supported
me both economically and morally, always encouraging me to improve
myself.

With special affection to Esme. She is always there, and she will be.
Never stop smiling.

236

Epilogue

Oscar Wilde once said: “Education is an admirable thing. But it is well

to remember from time to time that nothing that is worth knowing can be

taught”. Throughout these years, I have learned things that go way beyond
these chapters. Now I face a new stage where I can apply what I learned
about hard work, passion, and, above all, perseverance.

237

Vita

Gorka Puente García was born in Vitoria-Gasteiz, Spain on May 18th,
1983, son of Francisco Javier Puente Prieto (father) and María Ascensión
García Ozaeta (mother). Gorka is brother of Jon Puente García and fiancé
of Esmeralda Ramírez Sánchez. Gorka obtained the Bachelor of Science
(BSc in 2006) and the Master of Science (MSc in 2009) in Computer
Science at the University of the Basque Country (UPV/EHU). Inbetween,
during 2007 he enjoyed a grant for an intership and spent eight months in
Edinburgh (Scotland).

puente.gorka@gmail.com

This dissertation was typed by the author.

239

	Introduction
	Overview
	Context
	General Problem
	This Dissertation
	Problem Statement for Wiki Initialization
	Problem Statement for Wiki Refactoring
	Problem Statement for Wiki Customization
	Contributions
	Design-Science as Research Approach
	Outline
	Conclusions

	Background
	Overview
	Wikis
	Definition
	Motivation
	Wiki Engines: MediaWiki
	Successful Case Studies
	Current Research Issues

	Model Driven Engineering
	Definition
	Motivation
	Models
	Metamodels
	Domain Specific Languages
	Transformations
	The Four Layer Architecture
	Technical Spaces
	Model Driven Interoperability
	Successful Case Studies
	Current Research Issues

	Conclusions

	Wiki Initialization: Aligning Wikis with Organizations
	Overview
	WSL Decision
	WSL Analysis
	The Need for Wiki Scaffolding
	Setting the Features

	WSL Design
	WSL Abstract Syntax
	WSL Concrete Syntax

	WSL Implementation
	WSL Deployment
	Edition
	Verification
	Enactment
	Installation

	Discussion through Related Work
	Scaffolding to Promote User Engagement
	Scaffolding to Mirror Existing Organizational Practices
	Scaffolding as a Way to Engage Management
	Scaffolding as a Wiki Map

	Conclusions

	Wiki Refactoring through Mind Map Manipulation
	Overview
	Motivating Scenarios
	Wiki Initialization
	Structure Refactoring
	Content Refactoring

	Understanding Wiki Refactoring
	The Wiki Corpus
	Refactoring Operations
	The Process of Wiki Refactoring: Requirements

	Perceived Affordance for Refactoring
	About the Tool: MediaWiki
	About the Environment: Organizations
	About the User: Knowledge Workers

	WikiWhirl: The Abstract Syntax
	WikiWhirl: The Concrete Syntax
	Wiki Models as Mind Maps

	WikiWhirl: Tool Support
	FreeMind as an Editor of Wiki Maps
	FreeMind as an Enactor of Refactoring Operations
	FreeMind as an Interpreter of Refactoring Operations
	FreeMind as a Workplace for Refactoring Sessions
	Architecture of the WikiWhirl Plugin

	Evaluation
	Experimental Design
	Execution
	Analysis
	Threats to Validity

	Wiki Refactoring Backed by the Community: Ballots
	Related Work
	Conclusions

	Wiki Customization through Web Augmentation Techniques
	Overview
	Motivating Scenarios
	WikiLayer: Layers on Wikis
	Features of Wiki Customization
	Understanding WikiLayer Expressions

	Framing WikiLayer into Wikipedia
	Related Work
	Conclusions

	Conclusions
	Overview
	Results
	Publications
	Research Visits
	Assessment and Future Research
	Conclusions

	Harvesting Models from Wiki Content
	Overview
	Web2.0 as Motivation of Schemol
	A Brief on Schemol
	Schemol for Wikis
	Related Work
	Conclusions

	MySQL Script for the Merge Operation
	MediaWiki Background Questionnaire
	Global Understandability Questionnaire
	Final Questionnaire
	Bibliography

